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Abstract: Within the gauge/gravity correspondence, we discuss the general formulation

of the shockwave metric which is dual to a ‘nucleus’ described by the strongly-coupled

N = 4 SYM theory in the limit where the number of colors Nc is arbitrarily large. We

emphasize that the ‘nucleus’ must possess N2
c degrees of freedom per unit volume, so like

a finite-temperature plasma, in order for a supergravity description to exist. We critically

reassess previous proposals for introducing transverse inhomogeneity in the shockwave and

formulate a new proposal in that sense, which involves no external source but requires the

introduction of an ‘infrared’ cutoff which mimics confinement. This cutoff however plays

no role when the shockwave is probed by a highly virtual projectile, so like in deep inelastic

scattering. We consider two such projectiles, the dilaton and the R-current, and compute

the respective structure functions including unitarity corrections. We find that there are

no leading-twist contributions to the structure functions at high virtuality, meaning that

there are no point-like constituents in the strongly coupled ‘nucleus’. In the black-disk

regime at low virtuality, the structure functions are suggestive of parton saturation with

occupation numbers of order one. The saturation momentum Qs grows with the energy

like Q2
s ∼ 1/x (with x the Bjorken variable), which is the hallmark of graviton exchanges

and is also necessary for the fulfillment of the energy-momentum sum rules.
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1 Introduction

Some of the experimental discoveries at RHIC, notably the unexpectedly large medium

effects known as elliptic flow and jet quenching, led to the suggestion that the deconfined

hadronic matter produced in the intermediate stages of a heavy ion collision might be

strongly interacting [1, 2]. This observation triggered a large theoretical activity aiming

at understanding the properties of a strongly-coupled plasma via string theory methods,

within the AdS/CFT correspondence (see, e.g., the review papers [3–5] and refs. therein).

Part of this activity concentrated on the ‘dual’ formulation of a heavy ion collision at

strong coupling. The main motivation for that problem is less in the description of the

nuclear wavefunctions by themselves — a real ultrarelativistic nucleus in QCD is rather

described via weak coupling methods, because of the high parton density produced by the

high-energy evolution [6] —, but rather in understanding the late stages of the collision

and, especially, study thermalization. If the deconfined matter produced after a heavy ion
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collision is effectively strongly coupled, then one may hope that the subsequent dynamics

leading to thermalization is not very sensitive to the perturbative early stages, and thus it

can be studied by simulating a full collision in AdS/CFT. Such a study may help explaining

one of the main puzzles left by RHIC, which is the very short thermalization time suggested

by the elliptic flow data.

The AdS/CFT correspondence [7–9] deals with the conformally symmetric N = 4

supersymmetric Yang-Mills (SYM) theory, and not directly with QCD. But this is probably

not a major impediment so long as we are interested in the temperature range 2Tc .

T . 5Tc (the relevant range for heavy ion experiments at RHIC and LHC), where the

QCD plasma itself appears to be nearly conformal, as shown by lattice studies [10]. For

practical reasons, all the studies so far were limited to the ‘supergravity approximation’

valid when the number of colors Nc, and hence also the ‘t Hooft coupling λ = g2Nc, are

arbitrarily large. (The gauge coupling g is assumed to be small, g ≪ 1, but fixed.) In this

approximation, a plasma or a nucleus are described as modifications of the asymptotically

AdS5 geometry that the string theory lives in, and the dynamics reduces to classical gravity

in this curved space-time. In order for the respective metric perturbation to survive as

Nc → ∞, one needs to assume that the system under consideration possesses N2
c degrees

of freedom per unit volume. This is indeed the case for the N = 4 SYM plasma at finite

temperature, whose dual description is a black-brane in AdS5 [11], but it would not be true

for a QCD-like nucleus, which is built with colorless ‘hadrons’.

Still, if we are merely interested in studying thermalization, then one can replace the

colliding nuclei with finite-size slices of plasma, represented as slices of ‘black-holes’ (more

properly, black branes) in AdS5. In the center-of-mass frame, where these ‘nuclei’ (prior

to the collision) are highly energetic and hence strongly Lorentz contracted, the black-

hole slices appear as shockwaves directing against each other. The ultimate objective

is to explicitly compute the scattering between two such shockwaves by solving Einstein

equations, and thus investigate the evolution towards a black brane at late stages, which

is synonymous of thermalization. Several steps have been already done in that sense, with

interesting results, and the dynamical formation of a black hole has been already seen

within supergravity calculations [12–23].

But before attacking this complicated problem, it is the very formulation of the gravity

dual of a nucleus as a shockwave which still meets with difficulties in the literature. The

would-be natural recipe for building such a shockwave in view of the discussion above —

namely, start with a slice of the plasma with finite longitudinal width L ≫ 1/T in the

plasma rest frame and then boost the dual ‘black-hole slice’ metric up to a large Lorentz

factor γ ≫ 1 — is not fully satisfactory at a conceptual level, since a ‘slice of a black-hole’

in AdS5 is not an exact solution to Einstein equations. Yet, as we shall demonstrate in

appendix A, this approximate procedure has the merit to generate a shockwave metric

which is similar to the one that we shall propose via different considerations, in section 2.

An important related problem is that of the conformal symmetry breaking: this was

already necessary in order to built hadronic-like bound states in the N = 4 SYM the-

ory [24–28], and one can hardly see how one could construct a nuclear shockwave without

introducing any scale in the problem. Yet, the original proposal in that sense, due to Janik
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and Peschanski [12], seems not to require any such a scale. As we shall argue in section 2,

such a scale must nevertheless be added by hand to that construction, in the form of a

cutoff on the radial dimension1 of AdS5 — either a ‘hard wall’, i.e. a sharp radial cutoff at

z = 1/Λ [25], or a ‘soft wall’, like in ref. [27]. This cutoff corresponds to an infrared cutoff

∼ Λ in the N = 4 SYM theory and mimics the confinement physics of QCD. Incidentally,

the metric produced by boosting a slice of the plasma is identical to that by Janik and

Peschanski near the Minkowski boundary (for z ≪ 1/T ), but it naturally involves a radial

cutoff, namely the black-hole horizon at z ∼ 1/T (see appendix A).

The need for a radial cutoff in AdS5 can be also seen via a different argument, which

is internal to the supergravity construction: without such a cutoff, the shockwave metric

develops a genuine space-time singularity at z → ∞, and not just a coordinate singularity.

This has been recognized in the literature [29] for the analog of the Janik-Peschanski metric

in 4 dimensions, known as the Kaigorodov space-time [30], but a similar argument holds

in 5 dimensions. The argument is quite subtle, since the singularity at z → ∞ does not

show up in any of the curvature scalars computed from this metric, but is of a more general

type, known as g-incompleteness [31].

The issue of the radial cutoff becomes even sharper when trying to introduce trans-

verse inhomogeneity in the shockwave, corresponding to a profile for the nuclear matter

distribution in the plane transverse to the collision axis. The two types of proposals in

that sense that we are aware of [16–19, 32] use external sources to break down confor-

mal symmetry. Besides the difficulty to motivate the N2
c -scaling for the strength of these

sources, these proposals have some unwanted features, which make them unrealistic from

the viewpoint of QCD. The proposal in ref. [16] uses a pointlike source located in the bulk

of AdS5 to produce a ‘nuclear’ energy-momentum distribution which falls off at large trans-

verse distances according to a power law, instead of the exponential law expected in the

presence of confinement. Accordingly, when used for scattering problems, this shockwave

yields cross-sections which violate the Froissart bound. The proposal in ref. [32] is even

more objectionable, in that one is mistreating the ‘ultraviolet’ (high-momentum) part of

the ‘nuclear’ wavefunction. This proposal involves a source on the boundary of AdS5, hence

the corresponding metric perturbation does not vanish when approaching the boundary.

Via the UV/IR correspondence [28, 33–37], this means that the spectrum of the quantum

modes included in the dual ‘nuclear’ wavefunction is flat in the high-momentum limit,

rather than rapidly falling down, as it should on physical grounds.

On the other hand, the analysis in ref. [32] has the virtue to have identified a class

of exact solutions to Einstein equations of the shockwave type, which allow for a generic

inhomogeneity in the transverse plane. This analysis lies at the basis of our shockwave

proposal in this paper. One can succinctly describe our proposal as follows: among the

two general solutions found in [32] and which involves the modified Bessel functions K2 and,

respectively, I2, we shall discard the solution ∝ K2 that was adopted in ref. [32] and keep

the other solution ∝ I2. The latter is the generalization of the shockwave metric by Janik

1Throughout this paper, we will be using Fefferman-Graham coordinates (see section 2 for precise defi-

nitions), with the radial distance denoted as z. Thus by ‘large radial distances’ we mean large separations

from the Minkowski boundary of AdS5, which in these coordinates lies at z = 0.

– 3 –



J
H
E
P
1
1
(
2
0
0
9
)
1
0
5

and Peschanski [12] (which is homogeneous in the transverse plane) to a generic transverse

energy-momentum distribution. This solution vanishes near the boundary (z → 0) like z4,

meaning that the spectrum of the modes included in the dual ‘nucleus’ has an acceptable

high-momentum tail ∝ 1/Q4. On the other hand, this solution would exponentially blow

up at large values of z, but this is not a problem since, as previously argued, the radial

dimension must be anyway supplemented with a cutoff at z = 1/Λ. From the perspective

of the boundary gauge theory, this scale Λ plays several roles, so like in QCD: it acts as an

infrared cutoff for quantum fluctuations, it sets the scale for energy-momentum density in

the ‘nucleus’, and also the characteristic scale for transverse inhomogeneity.

The introduction of this radial cutoff is clearly an ad hoc procedure (it spoils the exact-

ness of the solution) and any quantity which is sensitive to the details of this procedure is

model-dependent. This is probably the case for the collision between two such shockwaves,

but this is hardly a surprise: already in QCD, total hadronic cross-sections are dominated

by soft interactions and thus are sensitive to the physics of confinement. But even in that

case, one may hope that the thermalization process in the late stages of the collision is less

sensitive to the details of the cutoff. On the other hand, the collision between this ‘nucleus’

and a ‘hard’ probe with high transverse resolution Q ≫ Λ is probing the shockwave metric

only at small radial distances z . 1/Q ≪ 1/Λ, and hence it is completely insensitive to

the infrared cutoff. Once again, this is similar to QCD where deep inelastic scattering at

high–Q2 is insensitive to confinement.

The above considerations are illustrated by our calculations of deep inelastic scattering

(DIS) off the shockwave, which represent most of the material in this paper. The first cal-

culations of DIS at strong coupling within the gauge/string duality referred to some other

types of targets: a ‘glueball’ bound state [35, 38–40] (whose gravity dual is a normaliz-

able dilaton state in AdS5) and a finite temperature plasma (as represented by the AdS5

black-brane) [36, 37]. More recently, refs. [41, 42] presented the corresponding calculations

for a shockwave target (a ‘nucleus’, or a ‘plasma slice’), but their respective results appear

to disagree with each other. The main difference refers to the energy dependence of the

saturation momentum Qs, which is the characteristic scale for the onset of unitarity cor-

rections: for Q ≫ Qs, the scattering is weak, whereas for Q . Qs it reaches the unitarity

bound, or ‘black disk’, limit.

Already at weak coupling, Qs is known to grow quite fast with the energy, as an inverse

power of the Bjorken x variable, due to the rapid increase in the gluon density at small x

via bremsstrahlung [6]. At strong coupling, one expects parton branching to be faster and

to ‘quasi-democratically’ divide the energy among the daughter partons [35, 36, 38, 43–

45]. Accordingly, all partons should fragment down to very small values of x and then the

saturation momentum should grow with 1/x even faster. This is indeed what one found

in ref. [36, 38, 42] for various types of hadronic targets: dilaton, infinite plasma, and a

plasma slice. Moreover, the energy dependence emerging from these calculations looks very

natural from the viewpoint of supergravity: the scattering proceeds via multiple graviton

exchanges, so the saturation momentum inherits the energy dependence of the graviton
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propagator, which implies2 Q2
s ∝ 1/x. This specific energy dependence is also necessary

to ensure energy-momentum conservation, as we shall later explain. On the other hand,

ref. [41] reported a rather counterintuitive result for Qs, which becomes independent of x in

the high energy limit. Although that analysis uses a different projectile — namely, a small

‘color dipole’ (dual to a Nambu-Goto open string in AdS5) instead of a virtual photon —,

it is unlikely that this can explain the dramatically different result obtained there for the

saturation momentum.3 Indeed, the latter is an intrinsic property of the target, hence it

must be insensitive to the precise nature of the projectile.

Our analysis in sections 3 and 4 will extend the previous analysis [42] of a finite-width

plasma, with results which agree with ref. [42] whenever a direct comparison is possible.

Our generalization will refer to several aspects:

(i) We shall consider two types of external probes: an R-current (so like in ref. [42])

in section 4, and a ‘dilaton’ in section 3. The R-current is an analog of the elec-

tromagnetic current for the N = 4 SYM theory, and is dual to an Abelian vector

field propagating in the asymptotically AdS5 space-time. In the supergravity approx-

imation, DIS amounts to solving the Maxwell equations for this vector field in the

background of the AdS5 shockwave geometry.4 The ‘dilaton’ is a supergravity scalar

field which is dual to the Lagrangian density L = (1/4)F a
µνFµν

a + . . . . The dilaton

case will be presented first, and in more detail, since the corresponding equations of

motion — the Klein-Gordon equations in the shockwave geometry — turn out to be

simpler.

(ii) We shall for the first time consider the impact parameter dependence of the scattering

amplitude and of the saturation momentum, and in particular study the expansion of

the black disk with increasing energy and the emergence of the Froissart bound. We

shall perform this analysis for two types of shockwaves: that introduced in ref. [16]

and which involves a pointlike source in the bulk, and the one that we shall propose

in section 2 below and which allows for an arbitrary inhomogeneity in the transverse

plane.

(iii) Both for the dilaton and for the R-current, we shall construct the exact supergravity

solution in great detail, by resumming multiple scattering to all orders and showing

that this leads to the eikonalization of the single graviton exchange, as expected for

the scattering off a shockwave. (The eikonalization was also advocated in ref. [42],

but without an explicit construction.) This requires the respective ‘bulk-to-bulk’

2The picture is more subtle in the case of an infinite plasma, and the associated saturation scale shows

a faster rise with the energy, namely Q2
s ∝ 1/x2, but the additional power of 1/x is understood simply as

the coherence length of the virtual photon [36, 37].
3In fact, we shall find that the supergravity field dual to the virtual photon describes a dipolar partonic

fluctuation of the latter, so the DIS proceeds via the dipole scattering off the shockwave, so like in QCD at

weak coupling. Hence even the physical setup looks a priori similar in refs. [36, 38, 42] and respectively [41].
4For the supergravity approximation to apply to DIS, the total COM energy squared s must be limited

in such a way not to allow for the excitation of massive string states. The respective condition can be

written as 1/x ≪
√

λ [35], where x ≃ Q2/s is the Bjorken variable.

– 5 –
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propagators in AdS5 in real time and light-cone coordinates, that will be constructed

in appendix B. Similar results in the AdS/CFT context have been previously obtained

in refs. [46–49].

Let us now summarize the main results and conclusions which will emerge from

our analysis:

The DIS structure functions in the supergravity approximation come out in a factorized

structure which is reminiscent of the k⊥-factorization in QCD at weak coupling [6], with

the radial distance z in AdS5 playing the role of the transverse size r⊥ ∼ 1/k⊥ of the

partonic fluctuations of the projectile (‘virtual photon’) in the boundary gauge theory (as

expected from the UV/IR correspondence [28, 36, 37]). Namely, they involve a convolution

in z over the square of the incoming field (the supergravity solution for the dilaton or the

Maxwell field in the absence of the shockwave) times the cross-section for the scattering

between this field and the shockwave at a given value of z. In turn, this cross-section is

expressed in the eikonal approximation, as the integral over all the impact parameters of

a scattering amplitude which resums multiple graviton exchanges to all orders.

For sufficiently large Q2 and/or large values of Bjorken x, the multiple scattering

series can be expanded out, and then the dominant contribution to the structure functions

comes from the double graviton exchange (the single graviton exchange being purely real).

This leading contribution is of higher twist order, meaning that there are no point-like

constituents in the target, in agreement with previous analyses at strong coupling [35–40],

but in sharp contrast with the situation at weak coupling, where the dominant contribution

at large Q2 is of twist-two order and describes parton (in QCD, quark) distributions [6, 50].

For sufficiently low Q2 at a given value of x, the amplitude reaches the unitarity

limit and the structure functions are large. Remarkably, at least for the R-current, the

structure functions at low Q2 have the same parametric form as for a proton in QCD

at weak coupling. This similarity suggests a physical interpretation in terms of parton

saturation at strong coupling [36, 38]: the low–k⊥ and low–x region of the phase-space

is filled with partons, with occupation numbers of order one. Note that, in pQCD, the

occupation numbers at saturation are of order one only for quarks, but they are of order

1/λ (with λ = g2Nc ≪ 1 at weak coupling) for gluons [6]. In that case, saturation is driven

by gluon dynamics, namely by the enhanced radiation of gluons with small values of x

and their mutual interactions (quark saturate only due to their coupling to gluons). By

contrast, at strong coupling, saturation is driven by quasi-democratic branching and the

occupation numbers at saturation are of order one for all types of partons [36, 38].

The borderline between the weak-scattering regime at high–Q2 and large–x, where

there are no partons, and the saturation region at low–Q2 and low–x defines the saturation

line, which can be expressed either as Q2 = Q2
s(x), or x = xs(Q). We find that this

saturation line is exactly the same for the dilaton and the R-current, which confirms that

this is an intrinsic property of the ‘nuclear’ target. Specifically, we find Q2
s(x) ∼ Λ3L/x,

in agreement with ref. [42]; here, Λ is the ‘confinement’ scale, as introduced by the energy

density in the target,5 and L is the longitudinal extent of the target in its rest frame. This

5This is also the scale which fixes the radial cutoff at z ∼ 1/Λ in AdS5, as previously explained, but this
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peculiar 1/x-dependence of Qs, which reflects the energy-dependence of the single graviton

exchange, can be also understood via an independent argument, that we now explain.

Namely, energy-momentum conservation implies that the integral
∫ 1
0 dxF2(x,Q2) of

the structure function F2 has a finite limit, of order N2
c , as Q2 → ∞. At large x ≫ xs(Q),

F2(x,Q2) has only higher-twist contributions which rapidly die away with increasing Q2

(see eq. (4.41)). At x . xs(Q), F2(x,Q2) is independent of x, due to saturation, and

of order N2
c Q2 (see eq. (4.42)). Hence, the integral is dominated by x ∼ xs(Q) — the

highest value of x at which the structure function is still finite at large Q2 —, and can be

estimated as

∫ 1

0
dxF2(x,Q2) ∼ xsF2(xs, Q

2) ∼ xs N2
c Q2 . (1.1)

For this to be independent of Q2, xs must scale as xs(Q) ∼ 1/Q2, or Q2
s(x) ∼ 1/x,

as announced.

So far, we did not mention the dependence of the various results, so like Qs, upon the

impact parameter b⊥. This will be discussed at length in the main text, and the main

conclusion is that, at strong coupling, the function Q2
s(x, b⊥) has the same b⊥-dependence

as the energy-momentum distribution in the shockwave. In particular, for a distribution

which exhibits an exponential tail at large b⊥ (as expected in the presence of confinement),

Q2
s(x, b⊥) has an exponential tail as well, and the black disk area grows like ln2(1/x),

that is, it saturates the Froissart bound. On the other hand, for the shockwave metric in

ref. [16], Q2
s(x, b⊥) ∼ 1/b 6

⊥ at large b⊥, and the area of the black disk grows like a power of

the energy, in violation of the Froissart bound.

2 Shockwaves with impact parameter dependence in AdS5

In this section, we shall discuss various proposals for asymptotically AdS5 shockwave met-

rics which are intended to represent the gravity duals of a fast moving ‘nucleus’ (more

properly, a slice of the plasma) with a non-trivial profile in impact parameter space (the

two dimensional space transverse to the direction of motion). We shall work in the nucleus

infinite momentum frame, that is, we shall take the nucleus to move in the positive x3 di-

rection with a Lorentz γ factor which is arbitrarily large. It is then convenient to introduce

light-cone coordinates,

x+ ≡ 1√
2

(x0 + x3) , x− ≡ 1√
2

(x0 − x3) , (2.1)

in terms of which the nucleus moves in the positive x+ direction, and the only non-trivial

component of its average energy-momentum tensor 〈Tµν〉 is the (−,−) component (as this

is the only one to be enhanced by the large factor γ2). By energy-momentum conservation,

∂µ〈Tµν〉 = 0, this component6 T−− ≡ 〈T−−〉 is independent of the light-cone time x+.

cutoff plays no role for DIS at Q2 ≫ Λ2.
6To avoid cumbersome notations, we shall omit the brackets denoting expectation values whenever there

is no risk of confusion.
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For the time being, we shall allow T−−(x−, x⊥) to be an arbitrary function of x− and

the transverse coordinates x⊥ = (x1, x2) (the ‘impact parameter’). In practice we shall

be mostly interested in the situation where the nucleus is strongly Lorentz contracted:

T−− ∝ δ(x−) (the ‘shockwave’).

We shall assume T−− to be proportional to N2
c . This is unrealistic from the point

of view of a real QCD problem, where a nucleus is built with colorless hadrons (protons

and nucleons). But within the present AdS/CFT context, such an assumption is necessary

in order to be able to study the high-energy dynamics in the large–Nc limit, to which

we would like restrict ourselves in what follows. Indeed, it is only when T−− ∝ N2
c that

the metric perturbation induced by the ‘nucleus’ in the ‘bulk’ metric of AdS5 is an effect

of O(1) which survives when Nc → ∞. Then, the nucleus and its interactions can be

simply described in the supergravity approximation, in which one first solves the Einstein

equations to determine the asymptotically AdS5 metric dual to the nucleus and then study

the propagation of various projectiles in this metric.

Our subsequent construction may be viewed as a model for the gravity dual of a slice of

a N = 4 SYM plasma at finite temperature T , which indeed has N2
c degrees of freedom per

unit volume, and hence an energy density T00 ∼ N2
c T 4 in the plasma rest frame, yielding

T−− ∼ γ2N2
c T 4 in the infinite momentum frame. In theoretical studies, the plasma is

generally assumed to be infinite, but this is unrealistic from a phenomenological viewpoint

and, besides, the concept of plasma makes sense also for a finite volume system (at least

over a finite time interval), so long as the size L of the system along any direction obeys

L ≫ 1/T . An explicit connection between the shockwave metric that we shall construct in

this section and the boosted slice of the plasma will be established in appendix A.

As mentioned in the Introduction, there are two types of proposals in the literature for

shockwave metrics in AdS5: one which introduces a gravity source in the bulk of AdS5 [16–

19], and one which does not [12, 32] (but boundary sources are in principle allowed in the

second case; see below). Both cases can be encoded in the following Einstein equations

Rmn − R
2

gmn + Λ gmn = 8πG5 Jmn , (2.2)

where m, n are 5-dimensional space-time indices, Λ = −6/R2 (with R the curvature radius

of AdS5) is the cosmological constant, R ≡ gmnRmn = −20/R2, G5 is the Newton constant

in D = 5, and Jmn is the stress tensor of the source localized in the bulk, for which we

shall consider the two scenarios alluded to above:

1. Type-I metric: Jmn = 0. This is the case considered in refs. [12, 32].

2. Type-II metric: Jmn corresponds to an ensemble of N2
c point-like ‘particles’ moving

together within AdS5 along a null geodesic parallel to the Minkowski boundary (see

eq. (2.18) for an explicit expression). This is the case considered in refs. [16–19].

As shown in the literature, the corresponding shockwave solutions to eq. (2.2) can be

obtained with the following Ansatz (in the so-called Fefferman-Graham coordinates)

ds2 =
R2

z2

[
dz2 − 2dx+dx− + dx2

⊥ + h(z, x−, x⊥)(dx−)2
]
, (2.3)
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for both cases: with or without bulk sources. Still in both cases, the function h(z, x−, x⊥)

is determined by the following, linear, equation
(

∂2
z − 3

z
∂z + ∇2

⊥

)

h(z, x−, x⊥) = −16πG5 J−− , (2.4)

which is the (−,−) component of eq. (2.2). Note that there is no ‘small perturbation’

assumption involved here: eq. (2.4) is the exact consequence of the Einstein equations (2.2)

for the Ansatz (2.3) and the specific stress-tensor Jmn under consideration. Accordingly,

the metric ‘perturbation’ g−− = (R2/z2)h, which describes the shockwave, needs not be

parametrically small. In fact, the normalization of this perturbation is related to that of

the energy-momentum tensor on the boundary, via holographic renormalization [51, 52].

Specifically, if h(4)(x−, x⊥) is the coefficient of the z4 term in the near-boundary (z → 0)

expansion of h(z, x−, x⊥), then

T−−(x−, x⊥) =
R3

4πG5
h(4)(x−, x⊥) =

N2
c

2π2
h(4)(x−, x⊥) , (2.5)

where the second equality follows after using the AdS/CFT correspondence to identify

G5 = πR3/2N2
c . As anticipated, T−− must scale like N2

c for the metric perturbation not

to be parametrically small.

We shall now successively consider the two interesting cases. In this process, we shall

recall some results from the literature, and we shall correct and extend the proposal in

refs. [12, 32].

2.1 Type-I metric: no source in the bulk

In this case we need the non-trivial solutions to the homogeneous version of eq. (2.4). Con-

sider first the case where there is no dependence upon x⊥, corresponding to a nucleus which

is uniform in impact parameter space (an infinite, uniform, wall). Then the solution reads

h(z, x−) =
2π2

N2
c

z4 T−−(x−) , (2.6)

where the normalization has been fixed according to eq. (2.5). With this expression for h,

the metric (2.3) is the original shockwave metric proposed by Janik and Peschanski [12].

Although an exact solution to the (homogeneous) Einstein equations, this metric has nev-

ertheless the drawback to have a singular point at z → ∞. We shall return to this issue

later on.

Consider now the homogeneous version of eq. (2.4) corresponding to a generic profile

in x⊥. It is then convenient to perform a Fourier transform to transverse momentum space,

which yields the following equation
(

∂2
z − 3

z
∂z − k2

⊥

)

h(z, x−, k⊥) = 0. (2.7)

The general solution is expressed in terms of modified Bessel functions of second rank:

h(z, x−, k⊥) =
1

2
(zk⊥)2

[
c1(x

−, k⊥)K2(zk⊥) + c2(x
−, k⊥)I2(zk⊥)

]
. (2.8)
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The near-boundary expansion of this solution reads as follows (up to order z4)

h(z, x−, k⊥) = c1(x
−, k⊥)

[

1 − z2k2
⊥

4
+

z4k4
⊥

32

(
− 2 ln(zk⊥/2) + 3/2 − 2γE

)
]

+

+ c2(x
−, k⊥)

z4k4
⊥

16
+ · · · , (2.9)

that is, the component proportional to I2(zk⊥) vanishes like z4 when z → 0, while that

proportional to K2(zk⊥) approaches a non-zero value in this limit. Consider also the large z

behavior: for zk⊥ ≫ 1, K2(zk⊥) is exponentially decreasing, while I2(zk⊥) is exponentially

increasing. For what follows, it is interesting to keep in mind that the homogeneous (in

the sense of no dependence upon x⊥) solution in eq. (2.6) corresponds to the limit k⊥ → 0

of the I2-piece of the general solution eq. (2.8).

In the framework of AdS/CFT, the solutions which diverge as z → ∞ are unacceptable

and must be discarded. In view of that, it might look natural to enforce c2 = 0 in eq. (2.8):

this is the common strategy for computing correlation functions in the vacuum of N = 4

SYM (here, the correlators of Tµν) [7–9], and this was also the proposal made in ref. [32]

for constructing the gravity dual of a nucleus. However, in what follows we shall argue that

choosing c2 = 0 in eq. (2.8) leads to a physically unacceptable picture for a nucleus. (In

particular, this would also exclude the homogeneous shockwave (2.6), which as alluded to

above represents the limit k⊥ → 0 of the piece of the solution proportional to c2.) A more

sensible choice, which is physically motivated, is to take c1 = 0 and introduce a cutoff in

the radial direction of AdS5 at a distance zΛ = 1/Λ, with Λ playing the role of an infrared

cutoff in the boundary gauge theory. To motivate this proposal, let us first explain the

difficulties with the original choice in ref. [32].

As just mentioned, taking c2 = 0 is the standard choice for computing the correlators

of Tµν in N = 4 SYM. In that case, the metric perturbation has a non-zero limit on

the boundary,

hµν(x−, k⊥) = lim
z→0

[
z2

R2
gµν(z, x−, k⊥)

]

− ηµν = δµ−δν− c1(x
−, k⊥) , (2.10)

which acts as an external source (not to be confused with the bulk source Jmn in eq. (2.2)),

which couples to Tµν in the boundary gauge theory. This external source induces a non-

vanishing expectation value for Tµν , which is proportional to the source and can be read

off eq. (2.5):

〈Tµν(x−, k⊥)〉 = δµ−δν−
N2

c

64π2
k4
⊥ ln

(
µ2

k2
⊥

)

c1(x
−, k⊥) . (2.11)

Here, µ is scale for ultraviolet renormalization in the gauge theory, as introduced by the

removal of the logarithmic singularity at z → 0 manifest in eq. (2.9). (The finite terms

beyond the logarithm which are also visible in eq. (2.9) have been absorbed in the definition

of µ.) By taking a functional derivative in eq. (2.11) with respect to h−− = c1, one obtains

the only non-vanishing 2-point function of Tµν within the present kinematics (in momentum
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space and with trivial delta functions removed):

〈T−−(k⊥)T++(−k⊥)〉 =
N2

c

64π2
k4
⊥ ln

(
µ2

k2
⊥

)

. (2.12)

This is indeed the expected result,7 with the specific k⊥-dependence in the r.h.s. reflecting

the conformal symmetry of N = 4 SYM (see, e.g., the discussion in [8]).

Within this standard procedure, the external source hµν plays no dynamical role, but

rather acts as a device for generating vacuum correlations via functional differentiation. By

contrast, in ref. [32] it has been proposed to use a similar procedure with a suitable choice

for the function c1(x
−, k⊥) in such a way to generate, via eq. (2.11), an energy-momentum

profile which physically would correspond to an ultrarelativistic nucleus. However, ref. [32]

showed no explicit proposal for such a function c1(x
−, k⊥), and in fact we shall now argue

that there is no meaningful solution of this type.

Our main objection to the proposal in ref. [32] is of physical nature, but it also gets

reflected in severe technical difficulties, which lead to paradoxes. Let us start with one

of these paradoxes, before we explain the deeper origin of the problem. Returning to the

simpler notation T−− ≡ 〈T−−〉, we notice that one must have T−−(k⊥ = 0) > 0 because

T−−(x−, k⊥ = 0) =

∫

d2x⊥ T−−(x−, x⊥) (2.13)

where T−−(x−, x⊥) is the positive semidefinite energy density in the transverse plane. For

this to be consistent with eq. (2.11) one should have c1 behaving like 1/k4
⊥ when k⊥ → 0.

But then the Fourier transform of h(z, x−, k⊥) back to the transverse coordinate space

is ill defined, because of an infrared divergence at k⊥ → 0. On the other hand, there is

clearly no similar problem if one chooses c1 = 0 and c2 6= 0 in eq. (2.8), since then one

can take c2 ∼ 1/k4
⊥ as k⊥ → 0 without generating infrared problems, as obvious from the

expansion (2.9).

That this is the only meaningful choice, it is also suggested by the behavior (2.9) of

the metric near z = 0 together with its physical interpretation according to the AdS/CFT

dictionary. Via the UV/IR correspondence [28, 33–37], the inverse 1/z of the radial dis-

tance in AdS5 is mapped onto the transverse momenta (or virtualities) of the quantum

fluctuations in the boundary gauge theory. Hence an expression like eq. (2.8) for the met-

ric perturbation should be viewed as encoding information about two types of transverse

momenta: the momentum k⊥ which via the Fourier mode c2(x
−, k⊥) determines the profile

of the nucleus in impact parameter space, and the momentum p⊥ ∼ 1/z which refers to

the quantum modes that we would like to include in our description of the nucleus and of

its high-energy interactions.

On physical grounds, in particular in view of our experience with QCD, we expect the

bulk of the modes in a hadron wavefunction to be concentrated at ‘soft’ momenta, of the

order of some infrared cutoff Λ, whereas at much larger momenta p⊥ ≫ Λ the distribution

7In the corresponding expressions in the literature, k2
⊥ is generally replaced by the invariant 4-momentum

squared k2 = k2
⊥ − 2k+k−. Note however that for the present set-up we have k− = 0 since there is no

dependence upon x+.
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should rapidly decrease, typically according to a power law (1/p⊥)∆. The exponent ∆ is

equal to 2 for the partonic tail produced via bremsstrahlung in QCD at weak coupling,

but it is equal to 4 or larger in all the situations where a gravity dual has been identified

for a hadronic system at strong coupling. For instance, ∆ = 4 in the case of the AdS5

black-brane geometry dual to the N = 4 SYM plasma [11], and also for the uniform

shockwave metric in eq. (2.6) [12], or for the metric induced by a pointlike source in the

bulk of AdS5 [19] (see eq. (2.22) below). Furthermore, for a normalizable dilaton state in

AdS5 [8, 9], which is dual to a ‘glueball’, one has ∆ = 2+
√

m2R2 + 4 ≥ 4, where the dilaton

mass m is proportional to the scale Λ which enters via the radial cutoff at z ∼ 1/Λ [25].

Such a large value for ∆ at strong coupling can be understood as the absence of partons

with high momenta [35–38], an interpretation to which we shall return in sections 3 and 4.

Clearly, ∆ = 4 is also the prediction of eq. (2.8) provided one takes c1 = 0 (cf. eq. (2.9)).

On the other hand, with c2 = 0, eq. (2.8) predicts a dominant behavior near z = 0 which

is independent of z, that is, a flat momentum spectrum (∆ = 0) in the high momentum

regime, which physically makes no sense.

The previous examples also show that the behavior in z4 of the metric perturbation

holds only for sufficiently small values of z, corresponding to the ultraviolet behavior of the

dual gauge theory. But this growth is cut off at some larger value of z, whose inverse plays

the role of an infrared cutoff in the gauge theory. Such a cutoff is necessary to introduce

the analog of matter (plasma or hadronic bound state) in the otherwise conformal SYM

field theory. For instance, this scale is provided by the black hole horizon at z ∼ 1/T for

the AdS5-Schwarzschild metric, by the radial position of the source in the bulk for the

shockwave metric in ref. [19] (see section 2.2 below), and by an explicit cutoff at large

values of z in the construction of the glueball bound state [24, 25, 27].

At a first sight, the uniform shockwave metric (2.6) seems not to involve any such a

scale, but this is only illusory: written as it stands, the metric perturbation in eq. (2.6)

blows up at z → ∞ and this divergence is a genuine space-time singularity, and not just a

coordinate singularity. As mentioned in the Introduction, this singularity is quite elusive,

as it does not show up in any of the curvature scalars computed from this metric. Rather,

it can be identified via a more general criterion for space-time singularities, known as g-

incompleteness (with g standing for “geodesic”) [31]. Namely, in an acceptable space-time,

which is g-complete, any time-like or null-like geodesic can be extended up to arbitrary

values in their affine parameters (like the proper time). The contrary would imply the

existence of observers whose history ends or begin at a finite proper time. On the other

hand, for the Janik-Peschanski metric one can construct time-like geodesics which, starting

at a generic point z0, reach infinity after a finite value of the proper time. (See [29] for an

analogous construction in the Kaigodorov space-time, which is the 4-dimensional version of

the Janik-Peschanski metric.) Hence, this metric is g-incomplete, and thus unacceptable.

One can effectively ‘hide’ the space-time singularity at z → ∞ by introducing a radial

cutoff at z = 1/Λ, which for that purpose plays the same role as the black hole horizon

within the AdS5 black-brane metric. But once this is done, it is no more disturbing to

use a general metric perturbation ∝ z2I2(zk⊥), which has the right behavior at small z

and allows for a generic transverse inhomogeneity, instead of the uniform shockwave in

eq. (2.6).
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To summarize, our proposal for a gravity dual to a large nucleus is given by the

asymptotically AdS5 metric in eq. (2.3) which applies for z ≤ zΛ ≡ 1/Λ and where the

function h is given, in transverse momentum space, by eq. (2.8) with c1 = 0 and c2 related

to the energy-momentum tensor of the nucleus that we would like to describe via

T−−(x−, k⊥) =
N2

c

32π2
k4
⊥ c2(x

−, k⊥). (2.14)

The example of the ‘plasma slice’ previously discussed suggests that a physically reasonable

choice for T−− would be

T−−(x−, x⊥) = γ2N2
c Λ4f(x−, x⊥Λ) , (2.15)

where the dimensionless function f describes the shape of the ‘nucleus’ in longitudinal and

transverse directions. The transverse inhomogeneity is controlled by the ‘soft’ scale Λ, so

like in QCD. The longitudinal support is concentrated at |x−| . L/γ with L the width of

the ‘nucleus’ in its rest frame. In the high energy limit, we can replace this by a δ-function

in x−:

f(x−, x⊥Λ) = f(x⊥Λ)
L

γ
δ(x−) , Λ2

∫

d2x⊥ f(x⊥Λ) = 1 , (2.16)

where the normalization of the new function f(x⊥Λ) has been chosen for convenience.

Some reasonable choices for f , inspired by our experience with QCD, would be a Gaussian,

or a Woods-Saxon profile which falls exponentially for distances far away from the center,

that is for x⊥Λ ≫ 1. These choices lead to the following model for the metric perturbation:

h(z, x−, x⊥) = 16π2γLΛ2z2 δ(x−)

∫
d2k⊥

(2π)2k2
⊥

eik⊥x⊥ f̃(k⊥/Λ) I2(z k⊥) , (2.17)

where f̃(k⊥/Λ) is the Fourier transform of Λ2f(x⊥Λ) (so it is dimensionless), and it has

support at k⊥ . Λ. A radial cutoff at z ∼ zΛ is implicit. Then, clearly, the argument of I2
can never become large.

Our prescription for cutting off AdS at z = zΛ is merely a model, and any calculation

which is sensitive to large values of z (so like the scattering between two shockwaves) will

be strongly sensitive to the details of this model — the value of Λ and the specific procedure

used for its implementation. Fortunately, there are also interesting phenomena, so like the

deep inelastic scattering to be considered in sections 3 and 4, which are controlled by the

‘hard’ (p⊥ ≫ Λ) part of the spectrum — in the AdS framework, by the behavior of the

metric near the boundary at z = 0 — and thus are completely insensitive to the model

used to cutoff AdS5 at large z.

2.2 Type-II metric: pointlike source in the bulk

We now briefly describe the shockwave proposal in ref. [19], which involves a source in

the bulk. We shall take this source to be composed of N2
c point-like ‘particles’ moving
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together8 along the trajectory defined by: x− = 0, x⊥ = 0, and z = z∗, with z∗ a positive

constant. Then the only non-zero component of Jmn is J−−, and is given by [19]

J−− = p+N2
c

z3

R3
δ(x−)δ(2)(x⊥)δ(z − z∗) , (2.18)

with p+ the light-cone longitudinal momentum of a single ‘particle’. The solution to

eq. (2.4) corresponding to this current reads

h(z, x−, x⊥) =
πp+

16

zz∗
q3 2F1(3, 5/2, 5,−1/q) δ(x−) (2.19)

where

q ≡ x2
⊥ + (z − z∗)

2

4zz∗
(2.20)

is the so called ‘chordal distance’9 between the point (z, x⊥) where we measure the metric

and the position (z∗, x⊥ = 0) of the pointlike source in the bulk, and the hypergeometric

function takes a rather simple form:

2F1(3, 5/2, 5,−1/q) = 16q3 1 + 8q(1 + q) − 4
√

q(1 + q)(1 + 2q)
√

q(1 + q)
. (2.21)

As anticipated, the energy E of the particle must scale like N2
c in order for the metric

perturbation eq. (2.19) to be non-negligible. Note that q ≫ 1 for both small (z ≪ z∗) and

large (z ≫ z∗) values of z. Using 2F1 ≃ 1 − 3/2q ≈ 1 when q ≫ 1, we deduce

h(z, x−, x⊥) ≃ 4πp+(zz∗)
4

(x2
⊥ + z2

∗)
3

δ(x−) for z ≪ z∗ , (2.22)

and respectively

h(z, x−, x⊥) ≃ 4πp+(zz∗)
4

(x2
⊥ + z2)3

δ(x−) for z ≫ z∗ , (2.23)

so, in particular, the metric perturbation dies away as 1/z2 when z → ∞.

The associated energy-momentum tensor in the boundary gauge theory follows from

eq. (2.5):

T−−(x−, x⊥) =
p+N2

c

π

2z4
∗

(x2
⊥ + z2

∗)
3

δ(x−) . (2.24)

This is essentially uniform so long as x⊥ ≪ z∗ but it decreases like 1/x6
⊥ for x⊥ ≫ z∗. We

see that 1/z∗ plays the same role as the ‘soft’ momentum scale Λ introduced previously,

in the sense of fixing the scale for transverse inhomogeneity in the nucleus. But unlike in

that previous case, now there is no need to explicitly cut off the radial dimension of AdS5,

since the metric perturbation eq. (2.19) dies away, like 1/z2, when z → ∞.

8Ref. [19] mentioned only a single such a particle, but here we shall consider a collection of N2
c of them,

in order to achieve a metric perturbation of order one. The alternative possibility, which would be to take

a single particle but with ultrahigh energy p+ ∼ N2
c , would be inconsistent with the use of the supergravity

approximation for any collision involving that ‘particle’ [35, 38].
9The chordal distance is the SO(3, 1)-invariant distance, i.e. the analog of the radial distance, for the

hyperbolic space H3 spanned by the coordinates (z, x⊥).
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3 DIS off the shockwave: the dilaton

In this and the next coming section, we shall consider the supergravity problem dual to

the deep inelastic scattering (DIS) between a ‘hard’ (i.e., highly virtual) external current

and a nucleus in the N = 4 SYM theory. The ‘nucleus’ should be thought off as a slice of

a plasma and it will be described as a shockwave, as already explained. Its construction

requires an infrared cutoff Λ, but the details of this cutoff will be unimportant for the

hard process at hand. The ‘current’ generally associated with DIS is a virtual photon with

space-like virtuality which couples to the electromagnetic current of the nucleus. Within

N = 4 SYM, this ‘electromagnetic current’ can be represented by the conserved R-current

carried by (adjoint) fermionic and scalar fields in the Lagrangian. The DIS of such an R-

current will be addressed in section 4. But before doing that, it is preferable to introduce

the formalism in the simpler context of the scalar ‘current’ J = (1/4)F a
µνFµν

a (a is the

SU(Nc) color index). This operator is interesting in itself, since it couples to the gluons

inside the nuclear wavefunction, and hence is a direct probe of the gluon distribution. The

‘bulk’ AdS field dual to this operator is the massless dilaton field, which obeys the simplest

equation of motion in supergravity: the Klein-Gordon equation in the relevant (here, the

shockwave) metric. For simplicity, we shall refer to the projectile as the ‘dilaton’ although,

strictly speaking, it is the operator J , and not the dilaton, which undergoes DIS in the

boundary gauge theory.

3.1 Formalism and structure function

As before, we shall work in the infinite momentum frame of the ‘target’ (the nucleus),

which therefore will be taken to be Lorentz contracted to a δ-function at x− = 0. The

‘projectile’ (the dilaton) propagates in the negative x3 direction (a ‘left mover’), with space-

like momentum qµ. In light-cone coordinates, we have q− > 0 and q+ < 0, and we take

q⊥ = 0 for convenience; hence, the virtuality of the projectile reads Q2 ≡ qµqµ = −2q+q− >

0. As usual with DIS, it is convenient to express the total cross-section (or the ‘structure

function’) in terms of Q2 and the Bjorken–x variable, defined as

x ≡ Q2

−2q · p =
Q2

2q−p+
=

Q2

2q−γΛ
(3.1)

where pµ = δµ+p+ is the momentum of a typical constituent of the target: p+ = γΛ with

Λ the characteristic momentum scale in the target rest frame (e.g., Λ = T for a slice of a

finite-temperature plasma) and γ ≫ 1 the nuclear boost factor. The kinematic conditions

of interest are such that Q2 ≫ Λ2 and x ≪ 1.

Via the optical theorem, the DIS structure function F (x,Q2) is expressed as the imag-

inary part of the forward scattering amplitude for Compton scattering:

F (x,Q2) = Im Π(x,Q2) , (3.2)

with the ‘polarization function’ Π(x,Q2) usually written as

Π(x,Q2) ≡ i

∫

d4r e−iq·r 〈P |T{J(x)J(y)}|P 〉 , (3.3)
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where rµ = xµ − yµ and the symbol T refers to time ordering. In LC coordinates and for

the problem at hand, the “time” variable is x−, since this plays the role of time for the

left-moving projectile. Also, for the purposes of the present calculation, it is preferable to

replace the time-ordered current-current correlator with the respective retarded one, which

yields the same imaginary part but is more directly accessible in the AdS/CFT formalism

(see e.g. [3]).

The above expression for Π is truly correct only when the target is in a state |P 〉 with a

given 4-momentum Pµ, which is translationally-invariant. In our current problem, however,

the target is represented as a shockwave which is localized in space and inhomogeneous

in both longitudinal (x−) and transverse (x⊥) directions. Accordingly, the current-current

correlator computed in this shockwave background depends not only upon the relative

separation rµ, but also upon the central coordinates b− and b⊥ (defined as bµ = (xµ+yµ)/2).

To obtain a structure function which depends only upon the kinematical variables x and

Q2, we shall follow the prescription in ref. [53] and average out the central coordinates.

The longitudinal extent of the target is of order L/γ (recall that L denotes its width in its

rest frame) whereas the scale for inhomogeneity in the transverse plane is set by Λ. We

shall thus replace eq. (3.3) by (the precise normalization is irrelevant at this point)

Π(x,Q2) = (γ/L)Λ2

∫

d4r db− d2b⊥ eiq·r iΘ(r−) 〈[J(b + r/2), J(b − r/2)]〉 , (3.4)

where the expectation value is to be computed according to the AdS/CFT correspondence

(see below) and, as announced, we have replaced the time-ordered correlator by the retarded

one. Note that J ∝ (Fµν)2 has mass dimension 4, so Π will have dimension 4.

Let Π(x, y) denote the (retarded) 2-point function of J which enters eq. (3.4). Accord-

ing to the AdS/CFT correspondence, this is formally obtained as

Π(x, y) =
δScl

δφb(x)δφb(y)
(3.5)

where Scl is the action of the dilaton field, that is,

S = − N2
c

16π2R3

∫

d4xdz
√−ggnm∂nφ∂mφ , (3.6)

evaluated with the solution φ(z, x) to the classical equations of motion,

∂m(
√−g gmn∂nφ) = 0 , (3.7)

obeying the following boundary condition at z = 0:

lim
z→0

φ(z, x) = φb(x) . (3.8)

On physical grounds, we need the boundary field φb(x) to be the plane-wave

φb(x) = e−i(q−x++q+x−) φ̃b (3.9)
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(φ̃b is simply a number), but at intermediate steps we shall consider a generic function

φb(x), for the purposes of functional differentiation. Using the equations of motion, one

can perform the integral over z in eq. (3.6) and obtain

Scl =
N2

c

16π2

∫

d4x
1

z3
φ(z, x) ∂zφ(z, x)

∣
∣
z=0

(3.10)

Note that the boundary condition (3.8) is not enough to fully specify the classical solution,

since eq. (3.7) is a second order differential equation in z. Furthermore, the above procedure

cannot reproduce the imaginary part of the retarded correlator, as obvious from the fact

that the 2-point function generated via eq. (3.5) is symmetric in its arguments. We shall

return to these problems later on.

Eq. (3.7) is written in the shockwave metric (2.3), which is independent of the light-

cone time x+. Thus, the equations are homogeneous in x+, meaning that the variable

q− introduced by the projectile is conserved by the dynamics. It is therefore sufficient to

restrict ourselves to the respective Fourier mode, by writing

φ(z, x+, x−, x⊥) = e−iq−x+
φ(z, x−, x⊥). (3.11)

(The function φ(z, x−, x⊥) in the r.h.s. depends upon q−, but this dependence is kept

implicit.) Then the equation of motion is more explicitly written as (with the notation

x = (x−, x⊥))
(

∂2
z − 3

z
∂z + 2iq−∂− + ∇2

⊥

)

φ(z, x) = −(q−)2h(z, x)φ(z, x). (3.12)

We have separated in the right hand side the interaction piece, which describes the scat-

tering between the dilaton and the shockwave. We shall correspondingly decompose the

total field φ into its ‘incoming’, or ‘vacuum’, piece φ0 and the ‘scattering’ piece φs:

φ(z, x) = φ0(z, x) + φs(z, x) , (3.13)

We construct φ0 in such a way to satisfy the boundary condition (3.8), hence

lim
z→0

φ0(x, z) = φb(x), lim
z→0

φs(x, z) = 0. (3.14)

The vacuum problem is formally similar to the source-free version of eq. (2.4) that we have

already solved: the equation is homogeneous in space and time, so the solution correspond-

ing to the boundary field (3.9) is of the form φ0(z, x) = e−iq+x−

φ0(z). The function φ0(z)

obeys the equation obtained by replacing k2
⊥ → −2q+q− = Q2 > 0 in eq. (2.7) with the

boundary condition φ0(z → 0) = φ̃b. Clearly the unique acceptable solution is (compare

to eq. (2.8))

φ0(z) =
1

2
(Qz)2 K2(Qz) φ̃b . (3.15)

This solution, together with eqs. (3.5) and (3.10), yields the vacuum component Π0(Q
2) of

the polarization function in a form entirely similar to eq. (2.12):

Π0(Q
2) ≡ i

∫

d4x e−iq·x 〈0 |T{J(x)J(0)}| 0〉 =
N2

c Q4

64π2
ln

(
µ2

Q2

)

. (3.16)
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For what follows, it is useful to rewrite eq. (3.15) in a more general way, which features

the vacuum boundary-to-bulk propagator D0(z, x − y):

φ0(z, x) =

∫

d3y D0(z, x − y)φb(y) , D0(z, k) =
1

2
(Kz)2 K2(Kz) , (3.17)

where the momentum-space version of D0 was written for the space-like kinematics of

interest here: K2 ≡ −2k+q− + k2
⊥ > 0. Via manipulations to be described in the next

section, we will construct the scattering piece φs in a similar form:

φs(z, x) =

∫

d3y D(z, x, y)φb(y) , (3.18)

where D(z, x, y) is the boundary-to-bulk propagator in the shockwave metric (2.3) and

is inhomogeneous in the spatial coordinates. Inserting this into eq. (3.10) we obtain the

scattering piece of the classical action as

Scl − S0 =
N2

c

16π2

∫

d3x

∫

d3y φb(x)φb(y)
1

z3
∂zD(z, x, y)

∣
∣
∣
∣
z=0

. (3.19)

When acting on (3.19) with the functional derivatives10 in (3.5), we obtain two terms:

δ

δφb(x) δφb(y)

∫

d3x́

∫

d3ý φb(x́)φb(ý)
1

z3
∂zD(z, x́, ý)

∣
∣
∣
∣
z=0

=
1

z3
∂z (D(z, x, y) + D(z, y, x))

∣
∣
∣
∣
z=0

, (3.20)

which together would provide a symmetric and real expression for the current-current cor-

relator Π(x, y). Clearly, this is not the physical result that we are interested in. To recover

the imaginary part of the retarded 2-point function, and hence the structure function

F (x,Q2), we follow the prescription in refs. [54, 55] and drop the second term in eq. (3.20),

while multiplying the contribution of the first term by two:

ΠR(x, y) =
N2

c

16π2

2

z3
∂zD(z, x, y)

∣
∣
∣
∣
z=0

. (3.21)

As it will become explicit later on, the propagator D(z, x, y) is retarded with respect to

the ‘time’ variable x−. Moreover, the solution built with this propagator, cf. eq. (3.18),

is such that for large times x− it represents a purely ‘infalling’ wave, i.e. a wave which

with increasing x− propagates towards larger values of the radial dimension z. Thus our

above prescription for keeping D(z, x, y) while discarding D(z, y, x) is indeed the same

as the prescription for keeping the infalling solution alone, as originally formulated in

refs. [54, 55].

Given ΠR(x, y), the polarization function (3.4) is finally computed as

Π(x,Q2) = (γ/L)Λ2

∫

dx−dy− d2x⊥d2y⊥ eiq+(x−−y−) ΠR(x, y) , (3.22)

10It is now understood that the functional derivatives are defined with respect to the three-dimensional

field φb(x
−, x⊥) and for a fixed value of q−.
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where as compared to eq. (3.4) we have removed the Fourier transform over x+ (since this

is automatically performed by working in the q−-representation) and rewritten the measure

as, e.g., dr−db− = dx−dy−. One can check on the previous equations that ΠR(x, y) has

mass dimension 7, hence Π(x,Q2) has dimension 4, as it should.

In section 3.3, we shall find that the structure function F (x,Q2) = Im Π(x,Q2) obeys

the following sum-rule

lim
Q2→∞

Λ2

Q2

∫ 1

0
dxxF (x,Q2) =

π

20
N2

c Λ4 , (3.23)

which is recognized as the statement of energy-momentum conservation: this particular

integral of F (x,Q2) singles out the coefficient in front of Tµν (the energy-momentum tensor

operator) in the operator product expansion (OPE) of the current-current correlator. The

quantity in the r.h.s. of eq. (3.23) can be recognized as the nuclear energy density in its

rest frame (up to a normalization factor).

3.2 Eikonal scattering

In what follows we shall construct the scattering field φs by iterating the interaction piece in

the r.h.s. of eq. (3.12). This amounts to resumming graviton exchanges between the target

and the projectile to all orders. To that aim, we need the integral version of eq. (3.12),

that is,

φ(x−, x⊥, z) = φ0(x
−, x⊥, z) +

∫
dź

ź3
dy−d2y⊥ G(z, ź;x− − y−, x⊥ − y⊥)

× [−(q−)2]h(ź, y−, y⊥)φ(ź, y−, y⊥), (3.24)

where G(z, ź;x− − y−, x⊥ − y⊥) is the bulk-to-bulk propagator obeying
(

∂2
z − 3

z
∂z + 2iq−∂− + ∇2

⊥

)

G(z, ź;x− − y−, x⊥ − y⊥) (3.25)

= z3δ(z − ź)δ(x− − y−)δ(2)(x⊥ − y⊥) ,

to be explicitly constructed in appendix B. (The euclidean version of this propagator is

well-known in the literature, and will be recovered in appendix B, but here we rather need

its real-time version in light-cone coordinates and mixed Fourier representation.) Given

the boundary conditions eq. (3.14), it is clear that G must vanish at the boundary. Several

expressions for this propagator will be useful in what follows. For instance, the following one

G(z, ź;x− − y−, x⊥ − y⊥) = − iΘ(x− − y−)

2q−

∫
d2k⊥
(2π)2

eik⊥·(x⊥−y⊥)

∫ ∞

0
dω ω

×z2J2(ωz) ź2J2(ωź) e
−

i(x−−y−)(ω2+k2
⊥

)

2q− , (3.26)

makes it clear that the propagator vanishes as z → 0 and/or ź → 0, and also that it is

retarded with respect to the projectile time variable x− − y−. Furthermore, by using the

completeness relation in eq. (B.3) for the Bessel functions, one can show that

G(z, ź;x− − y− → +0, x⊥ − y⊥) = − i

2q−
z3δ(z − ź)δ(2)(x⊥ − y⊥) . (3.27)
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We now proceed to formally solve eq. (3.24) via iterations. The first iteration gives

φ1(z, x−, x⊥) = −(q−)2
∫

dź

ź3
dx́−d2x́⊥ G(z, ź;x− − x́−, x⊥ − x́⊥)

×h(ź, x́−, x́⊥)φ0(ź, x́−, x́⊥), (3.28)

which we shall compactly rewrite as

φ1(X) = −(q−)2
∫

dX́ G(X, X́)h(X́)φ0(X́). (3.29)

The second iteration gives

φ2(X) = (q−)4
∫

dX́ ´́X G(X, X́)h(X́)G(X́, ´́X) h( ´́X)φ0 ( ´́X), (3.30)

and so on. An important simplification occurs in the limit where the shockwave h is

treated as a δ-function in x−; then, the perturbative series produced by iterations expo-

nentiates and yields an eikonal phase — a natural result at high energy. Specifically, let us

write h(z, x−, x⊥) = δ(x−)h̃(z, x⊥). Then from the factor h(X́)G(X́, ´́X)h( ´́X) in eq. (3.30)

we obtain

δ(x́−)Θ(x́− − ´́x−)δ(´́x−) =
1

2
δ(x́− − ´́x−)δ(x́−) (3.31)

which after also using eq. (3.27) gives a factor

− i

2q−
1

2
δ(X́ − ´́X)δ(x́−) . (3.32)

Thus eq. (3.30) reduces to

φ2(X) = −(q−)4
i

2q−

∫

dX́
1

2
G(X, X́) δ(x́−) h̃2(X́)φ0( ´́X). (3.33)

This procedure is easily generalized to higher orders: for the k-th iteration we deduce

1

k!
[−(q−)2]k h̃k(X́)

(

− i

2q−

)k−1

, (3.34)

where the factorial is again generated via the product of theta functions in the propagators

and delta functions in the metric field h. Then the sum exponentiates, as anticipated, with

the following final result:

φ(z, x−, x⊥) = φ0(z, x−, x⊥) − 2q−
∫

dź

ź3
d2x́⊥ G(z, ź;x−, x⊥ − x́⊥)T (ź, x́⊥)φ0(ź, 0, x́⊥)

(3.35)

where we have defined the scattering amplitude corresponding to a radial penetration z for

the dilaton and in the eikonal approximation as

− iT (z, b⊥) ≡ 1 − exp

[
iq−

2
h̃(z, b⊥)

]

. (3.36)
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An interpretation of this quantity in the boundary gauge theory will be shortly given,

following eq. (3.39).

Using the expression of φs in eq. (3.35) it is now straightforward to compute the DIS

structure function according to eqs. (3.2), (3.21) and (3.22). First we see that the bulk-to-

boundary propagator defined in equation (3.18) is given by (cf. eq. (3.17))

D(z, x, y) = −2q−
∫

d2b⊥

∫
dź

ź3
G(z, ź;x−, x⊥ − b⊥)T (ź, b⊥)D0(ź,−y−, b⊥ − y⊥). (3.37)

As anticipated, this propagator is retarded with respect to the variable x−, i.e. it is propor-

tional to Θ(x−), as required by causality. Clearly the integrals over x− and y− in eq. (3.22)

select the Fourier components with k+ = q+ in both G and D0. Similarly, the integrals

over x⊥ and y⊥ select the respective Fourier modes with zero transverse momenta. By also

using (cf. eq. (B.5))

2

z3
∂z G(z, ź; q+, k⊥ = 0)

∣
∣
∣
∣
z=0

= −(Qź)2K2(Qź), (3.38)

where we recall that Q2 = −2q+q− > 0, together with eq. (3.17) for D0, we finally arrive at

Π(x,Q2) =
Q6ΛN2

c

32π2xL

∫

dz z K2
2(Qz)

∫

d2b⊥ T (z, b⊥) , (3.39)

with the variable x defined in eq. (3.1).

This result has a natural interpretation: K2
2(Qz) plays the role of the wavefunction

squared for a partonic fluctuation of the ‘current’ J = (1/4)F 2 which according to the

UV/IR correspondence has a transverse size r⊥ ∼ z. The modified Bessel function effec-

tively restricts r⊥ to values r⊥ ∼ z . 1/Q, as expected from the uncertainty principle.

Furthermore,

σ(z, x) = 2

∫

d2b⊥ ImT (z, b⊥) (3.40)

is the total cross-section for the scattering between this partonic fluctuation and

the ‘nucleus’.

Let us finally verify that the use of the δ-function approximation for the metric per-

turbation, and hence the eikonal approximation, are indeed justified for the problem at

hand. By inspection of the previous manipulations, it is clear that the only place where

the assumption that h ∝ δ(x−) has played a role was in using

x−

2q−
(ω2 + k2

⊥) ≪ 1 (3.41)

in order to simplify the last exponential in eq. (3.26) and thus replace the intermediate

propagators in the iterative series by δ-functions, cf. eq. (3.27). In reality x− is, of course,

not strictly zero, but rather of order L/γ, which is the longitudinal width of the target in

the infinite momentum frame. Since k⊥ can never be too large (this is set by the transverse
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inhomogeneity in the target, so k⊥ ∼ Λ), while ω is typically of order 1/z (as fixed by the

oscillatory behavior of the Bessel functions in eq. (3.26)), the above inequality amounts to

z2 ≫ L

2q−γ
=

xΛL

Q2
. (3.42)

Note that, in this argument, z is the radial distance at some generic scattering point, e.g. ź

or ´́z in eq. (3.30), and not the argument z of φ in eq. (3.35), which approaches zero when

computing the structure function, cf. eq. (3.38). As we shall shortly check, the integral

over z in eq. (3.39) is dominated by z2 ∼ 1/Q2 ; hence, the condition in eq. (3.42) is well

satisfied whenever xΛL ≪ 1, which is indeed the interesting situation (since, typically,

L ∼ 1/Λ).

3.3 From single scattering to the saturation momentum

To further compute the DIS cross-section according to eq. (3.39) we need to specify the

metric perturbation h̃(z, b⊥) which enters the scattering amplitude (3.36). The crucial

point for what follows is that, as manifest on eq. (3.39), the DIS process is only sensitive to

relatively small values of z, such that z . 1/Q ≪ 1/Λ. In view of this and of the discussion

in section 2, it is clear that, for this purpose, it is enough to retain the dominant behavior

of h̃(z, b⊥) near the boundary (z → 0), which for any acceptable shockwave metric scales

like z4T−−, cf. eq. (2.5). Thus our formalism makes it clear that the DIS process at strong

coupling involves the scattering off the nuclear energy density T−−. On the supergravity

side, this scattering involves multiple graviton exchanges (here resummed in the eikonal

approximation), with each factor of z4 corresponding to one exchanged graviton. Hence,

from now on we shall simply take

h(x−, b⊥, z) = h̃(b⊥, z)δ(x−) = 2π2 T−−

N2
c

z4 , (3.43)

which is the approximate solution to the Einstein equation for the metric component h so

long as zΛ ≪ 1. One can cover both type of shockwaves described in section 2 by taking

T−−(x−, b⊥) = Λ2Ef(b⊥Λ)δ(x−) ≡ T̃−−(b⊥)δ(x−) , (3.44)

where E is the total energy of the nucleus: E = γLΛ2N2
c for the type-I shockwave in

eqs. (2.15)–(2.16) and, respectively, E = p+N2
c for the type-II one in eq. (2.24) (with

z∗ = 1/Λ).

Let us now consider the single scattering approximation which amounts to expanding

T (z, b⊥) in eq. (3.36) to lowest order. By also making use of eq. (3.43) the amplitude reads

T (1)(z, b⊥) = q−π2 T̃−−(b⊥)

N2
c

z4, (3.45)

which is purely real, reflecting the fact that the single graviton exchange generates no

imaginary part. Note that the single graviton exchange is proportional to the energy

density in the projectile and the target, and is of order zero in N2
c , because the target

contains N2
c degrees of freedom per unit volume (otherwise it would be suppressed like
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1/N2
c ). Via the UV/IR correspondence z ⇔ r⊥, eq. (3.45) implies that a small dipole

fluctuation of the projectile, so like a gluon-gluon pair, with transverse size r⊥ interacts

with the target with an amplitude T (r⊥) ∼ r4
⊥, which vanishes much faster at small r⊥

than at weak coupling11 (where one rather has T ∼ r2
⊥ [6]). As we shall later argue, this

difference is due to the fact that, at strong coupling, there are no high–Q2 partons in the

target wavefunction, that the dipole could scatter off.

In this single-scattering approximation the polarization function simplifies to

Π(1)(x,Q2) =
Q6ΛN2

c

32xL

∫

dz d2b⊥ zK2
2(Qz)

q−T̃−−(b⊥)

N2
c

z4 , (3.46)

which being real describes only elastic scattering. The integrals in eq. (3.46) can be exactly

performed and they yield the same final result for both types of metric (for the type-I

metric, the integral over b⊥ is performed according to eq. (2.16)), which reads

Π(1)(x,Q2) =
N2

c Λ2Q2

10x2
, (3.47)

This is suppressed by a power of Λ2/Q2 with respect to the corresponding vacuum result

in eq. (3.16) and thus it is recognized as a leading-twist effect. The fact that the structure

function F (x,Q2) vanishes in the leading-twist approximation, means that there are no

point-like constituents in the nuclear wavefunction at strong coupling, in agreement with

previous results in [35, 36, 38]. The 1/x2 rise in eq. (3.47), which on the supergravity side

is clearly associated with the graviton exchange, can be also understood in the original

gauge theory, as we explain now: in the OPE of the current-current correlator, valid

at high Q2, the leading-twist operators with spin n should produce contributions which

behave like 1/xn. At strong coupling, one expects all such operators to acquire large and

negative anomalous dimensions [56–58], of O(λ1/4), with the exception of the spin 2 energy-

momentum tensor operator, which is protected by symmetry. Hence, the only leading-twist

contribution expected to survive at strong coupling is the one which behaves like 1/x2, in

agreement with eq. (3.47).

Although it does not contribute directly to the structure function, the single scatter-

ing contribution in eq. (3.47) allows us to derive the sum-rule (3.23). Specifically, let us

introduce the variable ν ≡ 1/x and extend the polarization function Π(ν,Q2) to complex

values for the variable ν. Then, this function is expected to be analytic everywhere in the

complex ν plane except for two branch cuts along the real axis, at ν > 1 and ν < −1 (the

physical region for DIS and, respectively, the process related to DIS by crossing symmetry;

see, e.g., [50]). Then, via contour integration in the complex ν plane, one can relate the

behavior of this function near ν = 0, where the OPE applies, to integrals (‘moments’) of

the structure function F = Im Π along the branch cuts. In the present context at strong-

coupling, there is only one leading-twist contribution to Π(ν,Q2) — the single-scattering

11This would not be true for the shockwave metric selected in ref. [32], and which is obtained by taking

c2 = 0 and c1 6= 0 in eq. (2.8). In that case, the DIS cross-section would involve only the first, constant,

term in the small–z expansion (2.9), which via the UV/IR correspondence would imply that the scattering

amplitude remains constant as r⊥ → 0.
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piece Π(1)(ν,Q2) ∝ ν2Q2, cf. eq. (3.47) —, meaning that there is only one moment of the

structure function which survives in the high Q2 limit.12 Clearly, this moment is propor-

tional to the contribution of the energy-momentum tensor (the only protected leading-twist

operator) to Π. This contribution is isolated as follows:

N2
c Λ2Q2

10
=

∮
dν

2πi

Π(1)

ν3
≃ 2

∫ ∞

1

dν

2πi

2i Im Π

ν3
=

2

π

∫ 1

0
dxxF (x,Q2), (3.48)

where the contour in the first integral is a small circle surrounding the origin which is

then distorted in the complex plane in such a way to wrap around the two branch cuts

which give equal contributions. The approximate sign in the second equality refers to the

leading-twist approximation. As anticipated, this procedure reproduces eq. (3.23).

The dominant contribution to the DIS structure function at high Q2 is of higher-twist

order and comes from the two graviton exchange. This is easily estimated as

F (2)(x,Q2) =
π2Q6ΛN2

c

32xL

∫

dz d2b⊥ zK2
2(Qz)

[

q−T̃−−(b⊥)

N2
c

z4

]2

= κ
16π

7

N2
c Λ5L

x3
, (3.49)

with κ = πΛ2
∫

d2b⊥f2; in particular, κ = 1/8 for a type-I shockwave with the exponential

profile f = (1/2π) exp(−b⊥Λ) and κ = 4/5 for the type-II shockwave. Since generated by

cutting in between two graviton exchanges, this contribution to the structure function can

be characterized as being diffractive. Similarly, by expanding the eikonal phase in eq. (3.36)

to higher orders, one generates diffractive contributions to F (x,Q2) of successively higher

twist order and which increase faster and faster with decreasing x (as a power 1/xn+1

for the term corresponding to n graviton exchange). If one tries to use any single such a

diffractive contribution within the sum-rule (3.23), the ensuing integral is ill-defined at its

lower limit x → 0. This reflects the fact that the expansion of the eikonal amplitude makes

sense only so long as the exponent is much smaller than one. Thus, clearly, one expects a

change of regime when this exponent, which is the same as the single scattering amplitude,

becomes of O(1).

To study this change of regime, let us use eq. (3.44) to rewrite

T (1) = q−π2 EΛ2f(b⊥Λ)

N2
c

z4 ∼ Λ3Lf(b⊥Λ)

Q2x
. (3.50)

where we have also used the fact that z ∼ 1/Q together with eq. (3.1). (This estimate

applies to both types of shockwaves with the understanding that L ∼ 1/Λ ∼ z∗ for the

type-II metric.) The condition that T (1) be of O(1) can be solved for Q2 at fixed x and

b⊥, thus defining the saturation momentum:

Q2
s(x, b⊥) =

π2Λ3L

2x
f(b⊥Λ), (3.51)

where the factor π2/2 has been introduced for later convenience. Note that the transverse

profile f(b⊥Λ) of the nuclear energy density directly transmits to the saturation momentum.

12It is understood that one has to multiply the moment by the ratio Λ2/Q2 before taking the limit

Q2 → ∞, so like in eq. (3.23).
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In particular, for a shockwave which is homogeneous in the transverse impact parameter

space one has Q2
s = πLΛ3/2x, in agreement with refs. [38, 42], but in disagreement with

ref. [41], where a rather surprising result for Qs was reported, which becomes independent

of x at high energy. As it should be clear from the above analysis, and also from the

corresponding ones in refs. [38, 42], the 1/x rise of Q2
s at small x reflects the respective

behavior of the one-graviton-exchange scattering amplitude, and thus it seems unavoidable

within this gauge/gravity duality context, where the high energy scattering always amounts

to graviton exchanges.

Note finally that T (1)(z ∼ 1/Q, b⊥) ∼ Q2
s(x, b⊥)/Q2, which reaches its maximal value

at the center of the ‘nucleus’ (b⊥ = 0). This makes it clear that the ‘twist’ expansion

of the eikonal phase is an expansion in powers of Q2
s(x, 0)/Q2 and is appropriate in the

high–Q2 regime at Q2 ≫ Q2
s(x, 0). The opposite regime, at Q2 . Q2

s(x, 0), or equivalently

x ≤ xs(Q) where,

xs(Q) =
π2Λ3L

2Q2
f(0), (3.52)

will be studied in the next subsection.

3.4 Structure function at saturation

Having identified the saturation momentum which marks the borderline between weak and

strong scattering, we shall now compute the structure function in the ‘saturation region’ at

Q2 . Q2
s(x, 0). This will allow us to understand how the energy-momentum sum rule (3.23)

is satisfied and speculate about a possible partonic interpretation.

Let us start by rewriting the scattering amplitude defined in eq. (3.36) in terms of the

saturation momentum introduced in the previous subsection. It reads

T (z, x, b⊥) = i
{
1 − exp

[
iQ2Q2

s(x, b⊥)z4
] }

(3.53)

In this high energy, or relatively low Q2 regime, that we are interested in, there is a central

region of the nucleus which looks ‘black’ to the projectile. That is, for any given z there is

a ‘black disk’ radius Rb(z,Q, x) such that, for all b⊥ . Rb the eikonal phase in eq. (3.53)

can be neglected since rapidly oscillating and the scattering amplitude becomes purely

imaginary with a magnitude equal to one. In turn this means that the components of

the dilaton wavefunction located at radial distance z and impact parameters b⊥ . Rb are

completely absorbed in the shockwave. Recalling also eq. (3.51), we see that this black

disk radius is determined by

f(RbΛ)

f(0)
=

1

Q2Q2
s(x, 0)z4

. (3.54)

For given x and Q2, a black disk exists at the center of the ‘nucleus’ (b⊥ = 0) only for

those components of the dilaton which have penetrated far enough in the radial direction,

namely up to z ≥ z0 with z0 = 1/
√

QQs(x, 0). Physically, this means that the transverse

size r⊥ ∼ z of the partonic fluctuations of the projectile should be large enough for their
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color dipolar interactions in the target to be strong. Since on the other hand z is restricted

to z . 1/Q by the dilaton wavefunction, it is clear that a black disk can form only when

the energy is high enough for the condition Q2 . Q2
s(x, 0) to be satisfied. Once that the

black disk appears at the center of the ‘nucleus’ (for a given z ≥ z0) it rapidly occupies

the whole central region of the shockwave, which is essentially flat in b⊥. When further

increasing the energy, the black disk extends al larger values of b⊥, at a rate which depends

upon the transverse profile of the shockwave.

For example, for a type-II shockwave the black disk radius will be given by

(RbΛ)2 = [Q2Q2
s(x, 0)z4]1/3 − 1 . (3.55)

This exhibits a rapid increase with the energy, proportional to (1/x)1/3, which reflects the

power law tail in b⊥ of the respective energy density profile. On the contrary, a type-I

shockwave with an exponential tail at large b⊥ will have a black disk radius which at high

energy increases with 1/x only logarithmically, that is

(RbΛ)2 = ln2[Q2Q2
s(x, 0)z4]. (3.56)

For high enough energy, the total cross section (3.40) for a given value of z will be pro-

portional to the area of the respective black disk. (Indeed, outside the black disk, at

b⊥ ≫ Rb(z,Q, x), the amplitude is very small and rapidly decreasing with b⊥.) So, clearly,

the cross-section associated to the type-II shockwave will rise like a power of the energy, in

violation of the Froissart bound, whereas that corresponding to a type-I shockwave with

exponential tail will saturate the Froissart bound at high enough energy. In that sense,

the type-I shockwave is a more realistic model for a nucleus in QCD. In fact, the above

mechanism for the emergence of the Froissart bound is exactly the same as expected in

QCD: the competition between the power-law increase of the scattering amplitude with

the energy at a given b⊥ and the exponential decrease of the nuclear matter distribution

at large b⊥ (see e.g. [59] and refs. therein).

The previous considerations lead to the following expression for the structure function

at Q2 < Q2
s(x, 0):

F (x,Q2) =
N2

c

16π

Q6

xΛL

∫ ∞

z0

dz z K2
2(Qz) [Rb(z,Q, x)Λ]2. (3.57)

The Bessel function will effectively cut off all contributions coming from z & 1/Q, so that

the integration in eq. (3.57) is in practice supported only in the interval

1
√

QQs(x, 0)
. z .

1

Q
. (3.58)

However, the dilaton wavefunction diverges strongly at small z, more precisely K2
2(Qz) ≃

4/Q4z4. Thus for both cases, eqs. (3.55) and (3.56), the integration is dominated by

its lower limit. This comes as a surprise, since one might have expected to dominant

contribution to come from z ∼ 1/Q, as happens in the case of the R-current (see section 4

below), and also in perturbative QCD (after identifying z with the size of the dipole
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fluctuation of the virtual photon). Coming back to the dilaton case under study, we see

that for z ∼ z0 the black disk area (RbΛ)2 is a number of O(1) and thus the integration is

simply proportional to 1/Q4z2
0 = Qs(x, 0)/Q3. So, quite remarkably, the structure function

for the dilaton DIS is not sensitive to the expansion of the black disk with increasing energy

— rather, it is controlled by the central part of the black disk at b⊥ . 1/Λ —, and hence

it is not affected, e.g., by the violation of the Froissart bound in the case of the type-II

shockwave. This should be contrasted with the corresponding situation for the R-current,

to be described in section 4.

As we show in appendix C, deeply at saturation (Q2 ≪ Q2
s(x, 0)), we can also determine

the precise normalization of the structure function, and we finally have

F (x,Q2) = κ
N2

c

16
√

2π

Q4

xΛL

Qs(x, 0)

Q
, (3.59)

with κ a number which depends only on the profile of the shockwave under consideration.

It is straightforward to check that in the transition region at Q ∼ Qs(x), or equivalently

x ∼ xs(Q), the above result in eq. (3.59) is parametrically consistent with the respective

extrapolation of the dominant result at large–x, i.e. the 2-graviton exchange contribution

in eq. (3.49):

xsFs(xs, Q
2) ∼ Q4N2

c

ΛL
∼ xsF

(2)(xs, Q
2) . (3.60)

Of course, for x ∼ xs(Q) all the terms in the twist-expansion become parametri-

cally of the same order and our various approximations fail to apply there, except for

parametric estimates.

By using these estimates, one can now verify that the energy-momentum sum

rule (3.23) is indeed satisfied parametrically. The integral over x in the l.h.s. of eq. (3.23)

is dominated by x ∼ xs(Q), since for x ≫ xs the 2-graviton exchange contribution in

eq. (3.49) is rapidly decreasing with x, whereas for x . xs, we have xF (x,Q2) ∼ 1/
√

x.

Thus, by making use of eqs. (3.60) and (3.52) one can write

∫ 1

0
dxxF (x,Q2) ∼ x2

s F (xs, Q
2) ∼ Q4N2

c xs

ΛL
∼ Q2N2

c Λ2. (3.61)

Let us conclude this discussion by suggesting a possible partonic interpretation for the

previous results. The standard OPE analysis for the correlator (3.3) shows that, in the weak

coupling regime and for sufficiently high Q2, the quantity xF (x,Q2)/Q2 has the meaning

of the gluon distribution in the target (since gluons are the partons which directly couple to

the relevant operator J = (1/4)F 2). Namely, it is proportional with the number of gluons

per unit transverse area having longitudinal momentum fraction x and transverse momenta

k⊥ . Q. Then what about the previous results at strong coupling ? Since the energy-

momentum sum-rule is controlled by x ∼ xs(Q), it is natural to look at eq. (3.60), which

implies xsFs(xs, Q
2)/Q2 ∼ Q2N2

c . As we shall argue in more detail in section 4.3, where a

similar result occurs in the context of the R-current, this estimate is indeed consistent with

a partonic picture, in which the partons (here, gluons) are distributed along the saturation
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line with occupation numbers of order one.13 One the other hand, there are clearly no

partons at x ≫ xs(Q), as obvious from the lack of leading-twist contributions to F (x,Q2)

in that region.

4 DIS off the shockwave: the R-current

Let us now turn to the problem of deep inelastic scattering of an R-current Jµ off the

shockwave. As discussed in the beginning of section 3 this is a conserved current in N = 4

SYM which is carried by the fermionic and scalar fields. It is a bilinear in both of these types

of fields, whose precise form is not necessary for our discussion (it is given, for example,

in [36]), and it has mass dimension 3.

4.1 General equations: from the 5D action to the polarization tensor

We will be interested in calculating the polarization tensor

Πµν(q) =
γΛ2

L

∫

d4r db− d2b⊥ eiq·r iΘ(x0)〈[Jµ(b + r/2), Jν(b − r/2)]〉, (4.1)

which is the analogous to eq. (3.4) and where the notation is the same as in the previous

section. The bulk field dual to the R-current Jµ is the SO(6) gauge field Am, where we

have suppressed the fixed color index of this vector field corresponding to the fixed index

of the R-current. To compute Πµν (see eq. (4.3) below), we need only the quadratic part

of the respective Yang-Mills action in the AdS5 background. It reads

S = − N2
c

64π2R

∫

d4xdz
√−g gmpgnqFmnFpq, (4.2)

with Fmn = ∂mAn − ∂nAm. According to the AdS/CFT correspondence the 2-point func-

tion of the current appearing in the integrand eq. (4.1) is equal to

Πµν(x, y) =
δ2Scl

δAµ(x)δAν(y)

∣
∣
∣
∣
Aµ=0

. (4.3)

In the above, Scl is the action evaluated on the solution to the equations of motion

∂m(
√−g gmpgnqFpq) = 0, (4.4)

i.e. the Maxwell equations in curved space-time, with the following boundary conditions

lim
z→0

Aµ(z, x) = Aµ(x) and lim
z→0

Az(z, x) = 0. (4.5)

It will be convenient to adopt the gauge condition Az = 0. Furthermore, as in the case of

the dilaton, we shall assume that the boundary field is a plane wave of the form

Aµ(x) = e−i(q−x++q+x−)Ãµ, (4.6)

13At this stage, it might be useful to remember that, in the saturation region at x ≤ xs(Q), the partonic

interpretation of the DIS structure functions does not rely on the validity of the twist expansion (and the

dominance of the twist-two operators) not even at weak coupling [6].
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so that the components of Ãµ are pure numbers. Now let us integrate eq. (4.2) by parts.

Using the Maxwell equations (4.4) only the boundary term survives to give

Scl = − N2
c

32π2R

∫

d4xdz ∂m(
√−g gmpgnqFpqAn). (4.7)

Substitution of our shockwave metric into the above leads to

Scl =
N2

c

32π2

∫

d4x
1

z

(
−A+A′

− − A−A′
+ + AiA

′
i

)
∣
∣
∣
z=0

, (4.8)

where a prime represents differentiation with respect to z, the index i = 1, 2 refers to the

transverse components and we have dropped a term −hA+A′
+ inside the parenthesis which

does not contribute since h ∝ z4 for small z.

For simplicity, from now on we will restrict to the case where the fields are independent

of x⊥, which is the situation when the shockwave is homogeneous in transverse directions:

∂ih = 0. Furthermore, since the shockwave metric in eq. (2.3) does not depend on x+, we

can restrict ourselves to a single Fourier mode of the gauge field as follows

Aµ(z, x+, x−) = e−iq−x+
Aµ(z, x−). (4.9)

The Maxwell equations for n = −, z, i become

(z∂zz
−1∂z + iq−∂−)A+ = (q−)2A−, (4.10)

(∂− − iq−h)A′
+− = iq−A′

−, (4.11)

(z∂zz
−1∂z + 2iq−∂−)Ai = −(q−)2hAi. (4.12)

Notice that in the vacuum case h = 0, the x− dependence of the field is that of a plane

wave, that is e−iq+x−

. The first two equations are coupled. In order to solve them we

differentiate (4.10) with respect to z and we make use of (4.11) to arrive at the differential

equation which determines A′
+:

(∂zz∂zz
−1 + 2iq−∂−)A′

+ = −(q−)2hA′
+. (4.13)

As in the dilaton case, we separate the total field into a vacuum piece and a scattering piece

Aµ(z, x−) = A(0)
µ (z, x−) + A(s)

µ (z, x−), (4.14)

with A
(0)
µ (z, x−) satisfying the vacuum version of the Maxwell equations which are obtained

by setting h = 0. We shall construct Aµ(z, x−) so that its boundary condition at z = 0 is

fully encoded in the vacuum field, that is

lim
z→0

A(0)
µ (z, x−) = Aµ(x−) and lim

z→0
A(s)

µ (z, x−) = 0. (4.15)

Now we define the boundary to bulk propagator Dµν according to

A(s)
µ (z, x−) =

∫

dy− Dµ
ν(z, x−, y−)Aν(y

−), (4.16)
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which must be determined by solving the equations of motion. Then the contribution of

the scattering piece to the classical action eq. (4.8) is obtained from −A
(0)
+ A

′(s)
− −A

(0)
− A

′(s)
+ +

A
(0)
i A

′(s)
i and reads

Scl − S0 = V
N2

c

32π2

∫

dx−dy−Aµ(x−)Aν(y
−)

1

z
∂zD

µν(z, x−, y−)

∣
∣
∣
∣
z=0

, (4.17)

with the volume factor V arising from the integration over x+ and x⊥. Functional differ-

entiation according to eq. (4.3) and use of the same prescription as the one used in the

dilaton case (cf. the discussion just after eq. (3.20)) leads to14

Πµν
R =

1

V

N2
c

16π2

1

z
∂zD

µν(z, x−, y−)

∣
∣
∣
∣
z=0

. (4.18)

Substituting into eq. (4.1) we finally arrive at

Πµν(q) =
γ

L

N2
c

16π2

∫

dx−dy− eiq+(x−−y−) 1

z
∂zD

µν(z, x−, y−)

∣
∣
∣
∣
z=0

. (4.19)

Let us notice here that not all the components of the propagator Dµν , and therefore of the

tensor Πµν , are independent. In fact, only two components are independent since Πµν can

be decomposed as

Πµν(q) =

(

ηµν − qµqν

Q2

)

Π1(x,Q2) +

(

pµ − p · q
Q2

qµ

) (

pν − p · q
Q2

qν

)

Π2(x,Q2), (4.20)

which follows from general symmetries (namely the current conservation together with the

time-reversal symmetry Πµν(q) = Πµν(−q)) and can be explicitly verified by calculating one

by one all the components of the propagator Dµν . Hence we will just need to determine

Πii and, for example, Π−−, since the remaining non-vanishing components will be then

determined as

Π++ =
Q4

4(q−)4
Π−− and Π+− = Π−+ =

Q2

2(q−)2
Π−−. (4.21)

4.2 The classical solution

The solution to the equations of motion is constructed in the same way as in the dilaton

case. Resumming the graviton exchanges to all orders we find for the scattering part of

the transverse field

A
(s)
i (x−, z) = −2q−

∫
dź

ź
GT(z, ź;x−)T (ź)A

(0)
i (0, ź), (4.22)

where the scattering amplitude T (ź) has already been defined in eq. (3.36) and with the

Green’s function GT satisfying in momentum space

(z∂zz
−1∂z − K2)GT(z, ź;K2) = zδ(z − ź), (4.23)

14Notice that there is a factor 1/V for each functional differentiation since δ/δA(x) = (1/V )δ/δA(x−).
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with the notation K2 = −2k+q−. The precise form of the Green’s function is given in

appendix B. Now we can see that the respective boundary to bulk propagator reads

Dii(z, x−, y−) = −2q−
∫

dź

ź
GT(z, ź;x−)T (ź)Dii

0 (ź,−y−), (4.24)

where Dii
0 is the corresponding boundary to bulk propagator in the vacuum and in mo-

mentum space is given by (for space-like momenta, i.e., K2 > 0)

Dii
0 (z,K) = KzK1(Kz). (4.25)

Substituting the above into eq. (4.19) we can immediately perform the integrations over the

longitudinal coordinates which will select the q+ component of both the Green’s function

GT and the propagator Dii
0 . We then have (with Q2 = −2q+q− > 0)

Πii = − N2
c

16π2

Q2

xΛL

∫
dź

ź

1

z
∂zGT(z, ź;Q2)

∣
∣
∣
z=0

T (ź)Dii
0 (ź, Q). (4.26)

Finally by making use of

− 1

z
∂zGT(z, ź;Q2)

∣
∣
∣
z=0

= Qź K1(Qź), (4.27)

and eq. (4.25), and changing the name of the integration variable from ź to z, we arrive at

Πii =
N2

c

16π2

Q4

xΛL

∫

dz z K2
1(Qz)T (z). (4.28)

We recognize here a structure similar to that in eq. (3.39): once again, the Bessel function

K2
1(Qz) plays the role of the wavefunction squared for the partonic fluctuation of the R-

current (namely, a fluctuation with transverse size ∆x⊥ ∼ z). Interestingly, it is the same

Bessel function which determines the wavefunction of the quark-antiquark fluctuation of

a space-like photon in lowest-order perturbative QCD. The same remark applies to the

structure of Π−−, that we now compute. Namely, the scattering part of the A+ component

of the gauge field is found as

A
′(s)
+ (x−, z) = −2q−

∫
dź

ź
GL(z, ź;x−)T (ź)A

′(0)
+ (0, ź), (4.29)

with the Green’s function GL satisfying in momentum space

(∂zz∂zz
−1 − K2)GL(z, ź;K2) = zδ(z − ź), (4.30)

and again the precise form of the Green’s function is given in appendix B. Now we need

to be careful when we express the vacuum field A
′(0)
+ (0, ź) in terms of the boundary values.

We have

A
′(0)
+ (x−, z) =

∫

dy− ∂zD
−µ
0 (z, x−, y−)Aµ(y−), (4.31)
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where the upper index µ can be either + or −. Both components of the boundary to bulk

propagator ∂zD
−µ
0 (z, x−, y−) satisfy the vacuum version of eq. (4.13) and in momentum

space they are given by

∂zD
−µ
0 (z,K) =

1

2
K2z K0(Kz)cµ with c+ = 1 and c− =

2(q−)2

Q2
. (4.32)

The coefficients cµ have been determined by plugging the above equations into the left

hand side of eq. (4.10) and then evaluating both sides of that equation on the boundary.

Since we would like to calculate Π−− we shall need here only the D−−
0 component, but it

is already obvious from the above equation why the ratio Π+−/Π−− is given by the second

equation in eq. (4.21). From the previous equations one can read the relevant boundary to

bulk propagator as

∂zD
−−(z, x−, y−) = −2q−

∫
dź

ź
GL(z, ź;x−)T (ź)∂źD

−−
0 (ź,−y−). (4.33)

We proceed as before and we plug into eq. (4.19) to obtain

Π−− = − N2
c

16π2

Q2

xΛL

∫
dź

ź

1

z
GL(z, ź;Q2)

∣
∣
∣
z=0

T (ź)∂źD
ii
0 (ź, Q). (4.34)

Using −(1/z)GL(z, ź;Q2)|z=0 = ź K0(Qź) and then letting ź → z we finally obtain

Q2

(q−)2
Π−− =

N2
c

16π2

Q4

xΛL

∫

dz z K2
0(Qz)T (z). (4.35)

4.3 Structure functions and their partonic interpretation

We are finally in a position to calculate the Lorentz invariant structure functions F1 and

F2. In general they are given by

F1 =
1

2π
Im Π1, F2 = −p · q

2π
Im Π2. (4.36)

Focusing on the (−−) and (ii) components in (4.20) we can express Π1 and Π2, and

therefore the structure functions, in terms of the components Π−− and Πii that we have

already calculated. It is also customary and convenient to introduce the transverse and

longitudinal structure functions FT and FL. Let us summarize here our results for all these

various structure functions:

FT = 2xF1 =
x

π
ImΠii =

N2
c

16π3

Q4

ΛL

∫

dz z K2
1(Qz)T (z), (4.37)

FL =
x

π
Im

Q2

(q−)2
Π−− =

N2
c

16π3

Q4

ΛL

∫

dz z K2
0(Qz)T (z), (4.38)

F2 = FT + FL. (4.39)

These results are in agreement with those in ref. [42]; there is in fact a mismatch by an

overall factor ΛL, but this is presumably related to the use of different conventions in the

normalization of the current-current correlator.
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We have already seen that the scattering amplitude T that emerged during the cal-

culation is the same as the one appeared in the dilaton case. Thus the saturation scale

will also be the same in the case we are currently considering. This is natural since the

saturation scale is a property of the nuclear target and hence it should be the same whether

we probe it with the gluon current or with the R-current. Recalling that Q2
s = πΛ3L/2x

(in a homogeneous situation) we can write the amplitude T as

T (z,Q) = i
[
1 − exp

(
iQ2Q2

s z4
)]

. (4.40)

Since it not possible to obtain an analytic expression for the structure functions for

arbitrary value of x and Q2, we shall separately consider the two limiting cases.

(i) For Q ≫ Qs(x) (or, equivalently, x ≫ xs(Q), with xs(Q) defined in eq. (3.52)) we

need to expand the exponential in (4.40) to second order since the first order term

will not contribute to the imaginary part of the tensor Πµν . The upper limit in the

z-integration is 1/
√

QQs ≫ 1/Q, so it can be set equal to ∞. We find

FT =
16N2

c

7π

Λ2

x

Q2
s

Q2
, FL =

64N2
c

35π

Λ2

x

Q2
s

Q2
and F2 =

144N2
c

35π

Λ2

x

Q2
s

Q2
. (4.41)

As in the dilaton case, these contributions are of higher-twist order (in the context of

the R-current, a leading-twist contribution would be independent of Q2 at large Q2,

up to logarithms), which reflects the absence of point-like constituents in the nucleus.

(ii) For Q ≪ Qs(x) (or, equivalently, x ≪ xs(Q)), we set the exponential in (4.40) equal

to zero and we restrict the integration to z & 1/
√

QQs. In the longitudinal sector,

and since K0 diverges only logarithmically at small z, the integration is dominated

by the region z ∼ 1/Q, so that the lower limit can be safely set equal to zero. This is

not the case in the transverse sector where the integration is sensitive to small values.

Since K1(Qz) ≃ 1/Qz for small z, there is a logarithmically enhanced contribution

when compared to FL. Therefore the transverse sector dominates in F2, albeit this

dominance is only logarithmic. We get

F2 ≃ FT =
N2

c

64π3

Q2

ΛL
ln

Q2
s

Q2
and FL =

N2
c

32π3

Q2

ΛL
. (4.42)

Remarkably, the structure functions at low Q2 have the same parametric form as for

a proton in QCD at weak coupling, except for the replacement of the baryonic color

factor Nc corresponding to a proton by a factor N2
c corresponding to the density of

degrees of freedom in the shockwave.

Even though the above expressions in eqs. (4.41) and (4.42) are strictly valid for Q ≫
Qs and Q ≪ Qs respectively, they become of the same order when extrapolated to Q ∼ Qs

and therefore they can be parametrically trusted even for Q around Qs. This also means

that for Q ∼ Qs the transverse and longitudinal structure functions are of the same order.

So far, our analysis in the R-current case has been done for a homogeneous, in the

transverse space, shockwave. However, given the close analogy of the structure functions
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in eqs. (4.37) and (4.38) to the dilaton structure function in eq. (3.39) and the common

form of the scattering amplitude in the two cases, it is not unreasonable to extend the

discussion of section 3.4 to the problem of an inhomogeneous shockwave probed by an

R-current. In such a situation, and according to eq. (3.57), we would write the transverse

and longitudinal structure functions at saturation (Q2 ≪ Q2
s(x, 0)) as

FT,L(x,Q2) =
N2

c

8π2

Q4

ΛL

∫ ∞

z0

dz z K2
1,0(Qz) [Rb(z,Q, x)Λ]2, (4.43)

with Rb and z0 as in section 3.4. But, in contrast to the dilaton case, the z-integration

is now dominated by z ∼ 1/Q in the longitudinal sector, while it is only logarithmically

sensitive to the lower limit in the transverse sector (like in the homogeneous case), a

behavior similar to the one in QCD. For the exponential profile leading to the black disk

radius in eq. (3.56), we find

F2 ≃ FT =
N2

c

192π2

Q2

ΛL
ln3 Q2

s(x, 0)

Q2
and FL =

N2
c

16π2

Q2

ΛL
ln2 Q2

s(x, 0)

Q2
, (4.44)

where we see again the extra logarithmic enhancement in the transverse structure function.

In what follows, we shall argue that the results in eq. (4.42) have a natural physical

interpretation in terms of parton saturation in the boundary gauge theory. Our discussion

will closely follow that of the plasma structure functions at strong coupling, as originally

presented in ref. [36]. To that purpose, two more ingredients turn out to be extremely useful:

(a) The associated energy-momentum sum rules, which can be derived via the same

strategy as in the dilaton case (recall the discussion of eq. (3.48)). Namely, one

first computes the leading-twist, or single scattering, contributions to the Lorentz

invariants Π1(x,Q2) and Π2(x,Q2), which are real quantities as anticipated:

Π
(1)
1 =

N2
c

20

Λ2

x2
and Π

(1)
2 =

11N2
c

15

Λ2

Q2
, (4.45)

Then one uses analyticity and contour integration in the complex ν ≡ 1/x plane to

finally deduce

∫ 1

0
dxxF1(x,Q2) =

N2
c

80
Λ2 and

∫ 1

0
dxF2(x,Q2) =

11N2
c

120
Λ2 , (4.46)

which should more properly be understood as limiting values when Q2 → ∞ (since,

as in the dilaton case, we have neglected the higher-twist contributions to Π(ν,Q2)

near ν = 0). Examining eqs. (4.41) and (4.42), we can verify that these sum rules

are parametrically satisfied by our previous estimates for the structure functions, and

that the integrals are dominated by x ∼ xs, as expected. In fact, by using the exact,

integral, expressions for Πii and Π−− derived in the previous subsection, one can

explicitly evaluate the above integrals of F1 and F2 and thus check not only their

high–Q2 limit shown in eq. (4.46), but also the subleading corrections at large Q2.

This will be detailed in appendix D.
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Once again, the sum-rules (4.46) extract the contribution of the energy-momentum

tensor to the operator product expansion for the current-current correlator. In view

of this and of the mass dimensions of the above integrals, it is natural to interpret

them as the energy per unit length in the nucleus rest frame.

(b) The expression of the gluon distribution at saturation in perturbative QCD, which

reads, parametrically [6]

xG(x,Q2)

πR2
∼ 1

λ
N2

c Q2 ln
Q2

s(x)

Q2
, (4.47)

where we now assume λ ≡ g2Nc ≪ 1 and Nc ≫ 1. (The last assumption is not

essential, but merely convenient for the sake of comparison with the AdS/CFT re-

sults.) In writing eq. (4.47), we have also divided by the nuclear transverse area πR2,

so that the quantity shown there is the number of gluons per unit transverse area

having transverse momenta k⊥ . Q < Qs(x). Then, the estimate in the r.h.s. of

this equation can be understood as follows: the gluons with longitudinal momentum

fraction x and low transverse momenta k⊥ < Qs(x) are saturated, in the sense that

there is a number of gluons of O(1/λ) of each color per unit cell in the phase-space,

and this number does not grow with the energy anymore (in contrast to what hap-

pens at larger momenta k⊥ > Qs(x)). Specifically, eq. (4.47) implies the following

estimate for the gluon occupation number at saturation in QCD at weak coupling

and large Nc:

n(x, k⊥) ≡ 1

N2
c πR2

d xG(x,Q2)

dQ2

∣
∣
∣
∣
Q=k⊥

∼ 1

λ
ln

Q2
s(x)

k2
⊥

, (4.48)

which shows only a weak, logarithmic, dependence upon the energy, via the corre-

sponding dependence of the saturation momentum: Q2
s(x) ∼ 1/xω with ω ∼ O(λ).

We shall now argue that the gluon distribution in eq. (4.47) is the natural quantity to

compare with the structure function F2 in eq. (4.42) and that this comparison suggests a

partonic interpretation for the latter which is further supported by the sum rules (4.46).

As already mentioned, the R-current directly couples to fermionic and scalar fields of

N = 4 SYM, so the respective structure function F2 is most naturally related (at least

at weak coupling, where the standard OPE arguments apply) to the parton distributions

for these fields. However, the latter lie in the adjoint representation of the color group;

hence, for the purposes of the Nc power counting, it is more appropriate to compare F2 in

N = 4 SYM to the gluon distribution in QCD, and not to the respective structure function,

which rather describes the distribution of quarks in the fundamental representation. Such a

comparison, together with the formal similarity between eq. (4.47) and the expression (4.42)

for F2 (they both show the same parametric dependencies upon N2
c and Q2), immediately

suggests that partons are saturated at strong coupling too, but with occupation numbers

of order one, rather than 1/λ. More precisely, for k⊥ ≪ Qs(x), eq. (4.42) implies

n(x, k⊥) ≡ ΛL

N2
c

dF2(x,Q2)

dQ2

∣
∣
∣
∣
Q=k⊥

∼ ln
Q2

s(x)

k2
⊥

, (4.49)

– 35 –



J
H
E
P
1
1
(
2
0
0
9
)
1
0
5

which suggests that, at strong coupling, the mechanism for parton saturation has the same

effect as at weak coupling [6] (although its dynamical nature might be very different) — it

limits the rate for parton emission with increasing rapidity Y ≡ ln(1/x): dn/dY ∼ const.

for k⊥ . Qs(Y ). At least at weak coupling, this limitation is associated with the formation

of a ‘color glass condensate’ [6] — a strong color mean field collectively created by all

the small–x partons, which blocks the radiation of new partons once the density is high

enough. It is likely that a similar picture holds at strong coupling as well. But unlike

at weak coupling, where this saturation requires parametrically large occupation numbers

n ∼ 1/λ ≫ 1, to compensate for the weakness of the coupling, at strong coupling it occurs

already for occupation numbers of O(1), since the mutual repulsion becomes strong as soon

as the partons are allowed to interact with each other.

In writing eq. (4.49) we have extracted the parton occupation number at saturation

out of the structure function F2 in the same way as we would do at weak coupling. To

further justify this identification, let us now show that it is also consistent with the sum

rules (4.46), which in fact explain the additional factor ΛL that we have inserted in the

definition of n(x, k⊥) in eq. (4.49). We have already mentioned below eq. (4.46) that the

following integral

∫ 1

0
dxF2(x,Q2) ∼ xs F2(xs, Q

2) ∼ N2
c Λ2 , (4.50)

is proportional to the energy density per unit longitudinal distance in the target rest

frame. Using this, we would like to construct the energy per unit transverse area in the

shockwave.15 This is obtained by multiplying the quantity above by the longitudinal extent

L (to get the total energy), then dividing it by the transverse area (i.e. multiplying it by

a factor Λ2), and finally multiplying it by the Lorentz factor γ (to make a boost to the

target infinite momentum frame). One thus gets

dEsw

d2b
∼ γLΛ2

(
xF2(x,Q2)

)

x=xs
∼ k+

(
ΛLF2(x,Q2)

)

x=xs
, (4.51)

where we have also identified the longitudinal momentum k+ = xp+ = xγΛ of the parton

(scalar or adjoint fermion) which absorbs the virtual photon in this frame. The last estimate

above suggests that, at least for x ∼ xs where most of the energy is located, the quantity

ΛLF2(x,Q2) has the meaning of the total number of partons (with energy fraction x) per

unit transverse area as probed on the resolution scale Q2:

ΛLF2(x,Q2) ∼
Q2
∫

d2k⊥
dn

d2k⊥d2b⊥
. (4.52)

This is indeed consistent with eq. (4.49) since, by definition, n(x, k⊥) ≡
(1/N2

c ) [dn/d2k⊥d2b⊥].

15Of course, we already know the corresponding result — it reads (dEsw/d2b) ∼ γN2
c Λ4L —, but here

we are rather interested in expressing this result in terms of F2 and thus deducing a partonic interpretation

for the latter.

– 36 –



J
H
E
P
1
1
(
2
0
0
9
)
1
0
5

Acknowledgments

We would like to thank Guillaume Beuf for early discussions which motivated this work

and also for pointing to us refs. [29, 30]. We are grateful to Al Mueller for many inspiring

discussions and comments on the manuscript. We acknowledge useful discussions with

Javier Albacete, Jorge Casalderrey-Solana and Tony Rebhan. The work of E.A. and E.I.

is supported in part by Agence Nationale de la Recherche via the programme ANR-06-

BLAN-0285-01. The research of L.M. is supported under DOE Contract No. DE- AC02-

98CH10886. The work of D.N.T. is supported by the Austrian Science Foundation FWF
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A From black holes to shockwaves

Let us modify the temperature dependent piece of the AdS5 black-brane metric by an

arbitrary function depending on the x3 coordinate. That is, using Fefferman-Graham

coordinates, we consider the metric in

ds2 =
1

z2

{

−(1 − a)2

1 + a
dt2 + (1 + a)

[
dx2

⊥ + (dx3)2
]
+ dz2

}

with a ≡ c(x3)
z4

4z4
0

. (A.1)

Here c(x3) is a dimensionless function, which reduces to unity for the black-brane solution,

and z0 = 1/πT with T the Hawking temperature. In general eq. (A.1) is not a solution to

the Einstein equations. Now we would like to make a boost and choose a frame x́m which

moves with velocity −υ with respect to the frame xm and along their common axis in the

3-direction. In the new frame we would also like to switch to light-cone coordinates and it

is straightforward to check that the combined transformation of coordinates reads

t =
1√

2γ(1 + υ)
x́+ +

γ(1 + υ)√
2

x́−, (A.2)

x3 =
1√

2γ(1 + υ)
x́+ − γ(1 + υ)√

2
x́−. (A.3)

Clearly the transverse and radial coordinates remain unaffected. The metric tensor trans-

forms according to

ǵmn =
∂xp

∂x́m

∂xq

∂x́n
gpq, (A.4)

so that the components which are transformed read

ǵ++ =
1

2γ2 (1 + υ)2
(gtt + g33) =

2a

γ2(1 + υ)2z2(1 + a)
, (A.5)

ǵ−− =
γ2 (1 + υ)2

2
(gtt + g33) =

2γ2(1 + υ)2a

z2(1 + a)
, (A.6)

ǵ+− = ǵ−+ =
1

2
(gtt − g33) = − (1 + a2)

z2(1 + a)
. (A.7)
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When the boost is ultra relativistic, that is for γ ≫ 1 ⇔ υ → 1, we expect the metric to

simplify. Indeed we have

ǵ++ ≃ 0, ǵ−− ≃ 1

z2

2γ2c̃(x́−)z4

z4
0

1

1 + c̃(x́−)z4

4z4
0

and ǵ+− = ǵ−+ = − 1

z2

1 + [c̃(x́−)]2z8

16z8
0

1 + c̃(x́−)z4

4z4
0

,

(A.8)

where we have substituted a with its explicit form and we have defined c̃(x́−) = c(x3). No-

tice that in this ultra relativistic limit eq. (A.3) simplifies to x3 ≃ −
√

2γx́−. Furthermore,

close to the boundary, i.e. when z ≪ z0, one can approximate gii ≃ 1/z2 in eq. (A.1) and

also neglect the last factor in ǵ−− and ǵ+− in eq. (A.8). However, notice that ǵ−− does

not vanish since it is enhanced by the square of the large boost factor. Putting everything

together, and dropping the primes, we can write the metric as

ds2 ≃ 1

z2

[
2γ2c̃(x−)z4

z4
0

(dx−)2 − 2dx+dx− + dx2
⊥ + dz2

]

. (A.9)

This is formally the same as the metric corresponding to a homogeneous in the transverse

space shockwave, cf. eq. (2.6), which we recall is an exact solution to the Einstein equations.

Here, however, this metric emerges only as a near-boundary approximation valid for z ≪
1/T . On the other hand, the more general boosted-plasma metric in eq. (A.8) keeps trace

of the black hole horizon at z = z0, and it is valid only for z ≤ z0. This makes it natural

to supply the shockwave in eq. (2.6) with a radial cutoff at finite z ∼ 1/T or in general at

1/Λ, where Λ is an infrared cutoff in the dual gauge theory.

Let us finally observe that when the function c(x3) has support only in an interval of

finite length L, in the boosted system it will be transformed into a delta function. For

instance, in the case of a slice of a plasma (in the dual gauge theory) with c(x3) = 1 for

|x3| ≤ L/2 and zero otherwise, in the boosted frame and in light cone coordinates we find

c̃(x−) ≃ L

2
√

2γ
δ(x−). (A.10)

B The bulk-to-bulk propagator

In this appendix we outline the construction of the Green’s functions for the equations of

motion. For definiteness, let us consider the dilaton case. Taking the Fourier transform

of (3.25) w.r.t. x− and x⊥ we have

(

∂2
z − 3

z
∂z − K2

)

G(z, ź;K2) = z3δ(z − ź), (B.1)

where we have defined the variable K2 ≡ k2
⊥ − 2q−k+. The solution to the eigenvalue

problem for the operator ∂2
z − (3/z) ∂z is given by

(

∂2
z − 3

z
∂z

)

z2 J2(ωz) = −ω2z2 J2(ωz), (B.2)
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and the eigenfunctions satisfy the completeness relation

∫ ∞

0
dω ω z2J2(ωz) ź2J2(ωź) = z3δ(z − ź). (B.3)

Therefore we can write the Green’s function as

G(z, ź;K2) = −
∫ ∞

0
dω ω

1

ω2 + K2
z2J2(ωz) ź2J2(ωź). (B.4)

Now we would like to integrate over ω and we need to distinguish two possibilities according

to the sign of K2. In the spacelike case K2 > 0 we find

G(z, ź;K2 > 0) = −z2ź2[K2(Kź)I2(Kz)Θ(ź − z) + K2(Kz)I2(Kź)Θ(z − ź)]. (B.5)

In the timelike case K2 < 0 we need a prescription to avoid hitting the pole which is located

on the positive ω-axis. Letting K2 → K2 − iǫ with ǫ > 0, we find (in agreement with the

analytic continuation of (B.5))

G(z, ź;K2 < 0) = − iπz2ź2

2
[H

(1)
2 (|K|ź)J2(|K|z)Θ(ź − z) + H

(1)
2 (|K|z)J2(|K|ź)Θ(z − ź)].

(B.6)

Following the same procedure we can construct the Green’s functions that we encoun-

tered for the R-current in section 4. The transverse and longitudinal Green’s functions in

equations (4.23) and (4.30) are given by

GT(z, ź;K2 > 0) = −zź[K1(Kź)I1(Kz)Θ(ź − z) + K1(Kz)I1(Kź)Θ(z − ź)], (B.7)

GL(z, ź;K2 > 0) = −zź[K0(Kź)I0(Kz)Θ(ź − z) + K0(Kz)I0(Kź)Θ(z − ź)], (B.8)

respectively. The corresponding functions for K2 < 0 are obtained via analytic continua-

tion. Now the Green’s functions in coordinate space will be given by

G(z, ź;x− − y−, x⊥ − y⊥) =

∫
dk+d2k⊥

(2π)3
e−ik+(x−−y−)+ik⊥·(x⊥−y⊥)G(z, ź;K2). (B.9)

and the integration over k+ can be easily performed using the representation in eq. (B.4)

with our prescription K2 → K2 − iǫ. The pole is at (ω2 + k2
⊥)/2q− − iǫ and is enclosed by

the integration contour only for x− > y−. Thus the k+-integration leads to the factor

−
∫

dk+

2π

e−ik+(x−−y−)

ω2 + k2
⊥ − 2q−k+ − iǫ

= − iΘ(x− − y−)

2q−
exp

[

− i(x− − y−)(ω2 + k2
⊥)

2q−

]

, (B.10)

which in turn yields the expression in eq. (3.26).

The bulk-to-bulk propagator has been already constructed in the past (see for ex-

ample [18, 60, 61]), but mostly using Euclidean signature, or using standard Minkowski

coordinates instead of light cone coordinates. Therefore, let us now show how the methods

used in this paper lead to these known results. We will aim to write the propagator as a

function of the chordal distance introduced earlier in section 2. This property arises from

the fact that the differential operator can be rewritten as the Laplacian of the hyperbolic
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space Hd+1 with coordinates (z, x1, . . . , xd). We shall be interested in the case d = 4.

Defining the 4-dimensional vector r = x − y and performing a Wick rotation in eq. (B.4),

the Euclidean Green’s function in coordinate space is obtained as (below, k2 =
∑4

i=1 k2
i is

strictly positive)

G(z, ź; r) = −z2ź2

∫
d4k

(2π)4
eik·r

∫ ∞

0
dω ω

1

ω2 + k2
J2(ωz)J2(ωź). (B.11)

First we perform the integration over k. In d-dimensions we have

∫
ddk

(2π)d
eik·r

ω2 + k2
=

1

(2π)d/2

(ω

r

)d/2−1
Kd/2−1(ωr). (B.12)

Using the above for d = 4 and the identity K1(ωr) = −(1/ω)∂rK0(ωr), we can write the

coordinate space propagator as

G(z, ź; r) =
z2ź2

4π2r

∂

∂r

∫ ∞

0
dω ωJ2(ωz)J2(ωź)K0(ωr) =

z2ź2

4π2r

∂

∂r

(r2 − r1)
2

r1r2(r2 + r1)2
(B.13)

where we have found convenient to define

r1 =
√

r2 + (z − ź)2 and r2 =
√

r2 + (z + ź)2. (B.14)

Now we introduce a chordal coordinate ξ, which is closely related to the chordal distance

q defined in section 2, according to

ξ =
2zź

r2 + z2 + ź2
=

1

1 + 2q
. (B.15)

It is straightforward to make a change of variable from r to ξ and performing the required

algebraic manipulations we finally arrive at

G(ξ) = − 1

8π2

ξ4(1 + 2
√

1 − ξ2)

(1 − ξ2)3/2(1 +
√

1 − ξ2)2
= − 3ξ4

32π2 2F1(2, 5/2, 3; ξ
2), (B.16)

where 2F1 is the hypergeometric function. As announced, this expression depends on the

variables z, ź and r only through a single chordal coordinate. Up to a minus sign, which

is due to different conventions, this is equal to the bulk-to-bulk propagator given in [61].16

Furthermore, let us choose the ‘transverse’ space to be 2-dimensional. By making use

of eq. (B.12) for d = 2, we can write the propagator as

G2(z, ź; r) = −z2ź2

2πr

∫ ∞

0
dω ωJ2(ωz)J2(ωź)K0(ωr) =

z2ź2

4π2r

(r2 − r1)
2

r1r2(r2 + r1)2
. (B.17)

We can easily express the above in terms of the chordal distance q to find

G2(z, ź; q) = − zź

128πq3 2F1(3, 5/2, 5;−1/q). (B.18)

16One needs to set ∆ = d = 4 in eq. (6.12) of that reference in order to obtain the 5-dimensional

massless case.
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Multiplying the above by 8π2Eδ(x−)/N2
c , as dictated from eqs. (2.18) and (2.4), we are

lead to eq. (2.19). Finally, yet another definition is to use cosh u = 1/ξ, which means that

we can write

G2(z, ź;u) = − zź

4π

e−2u

sinhu
, (B.19)

which, up to an overall factor independent of u, is the form used in [18].17

C Prefactor of the structure function

In this short appendix we give an alternative calculation of the structure function at sat-

uration in the limit Q2 ≪ Q2
s(x, 0), in the case of probing with a dilaton, and in order

to determine the correct prefactor. We can write the most dominant contribution to the

structure function as

F (x,Q2) =
N2

c

32π2

Q6Λ

xL

∫ R

0
d2b⊥

∫ ∞

0
dz z K2

2(Qz)
{
1 − cos

[
Q2Q2

s(x, b⊥) z4
]}

, (C.1)

where the radius R is defined by Q2
s(x,R) = Q2. We have already seen in section 3.4

that the dominant contribution in this dilaton case comes from the region z ≪ 1/Q,

thus it is natural to approximate the Bessel function by its lowest order term, that is

K2(Qz) ≃ 2/(Qz)2. Then the z-integration gives
√

2π Qs(x, b⊥)/Q3 and the structure

function becomes

F (x,Q2) =
N2

c

16
√

2π

Q4

xΛL

Qs(x, 0)

Q

Λ2

π

∫ ∞

0
d2b⊥

√

f(b⊥Λ)

f(0)
︸ ︷︷ ︸

κ

. (C.2)

Notice that we have replaced the radius R in the upper limit of the impact parameter inte-

gration by ∞. This happens because the presence of the profile function in the numerator

of the integrand effectively restricts the integration at values b⊥ . 1/Λ, while at the same

time R ≫ 1/Λ. A posteriori this also justifies the small-z approximation since for all values

of b⊥ that contribute, one has Q2 ≪ Q2
s(x, b⊥). Now, κ in eq. (C.2) is a pure number which

depends on the profile of the shockwave. For instance, κ = 8 for the exponential type-I

shockwave of the form f(b⊥Λ) = (1/2π) exp(−b⊥Λ), while κ = 2 for the type-II one.

D Explicit check of sum rules

Here we will explicitly check the validity of the sum rule for the structure function F1 as

stated in the first expression in eq. (4.46). One can follow a similar procedure for other sum

rules. Using eqs. (4.37) and (4.40) which provide us with F1 and the scattering amplitude

T respectively we have

F1(x,Q4) =
N2

c

32π3

Q4

xΛL

∫ ∞

0
dz z K2

1(Qz)
[
1 − cos

(
Q2Q2

s z4
)]

. (D.1)

17In eq. (25) in that reference, where the sign in the exponent should be negative.
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We wish to integrate the above from x = 0 to x = 1 which is the physical region. Making

a change of variables from z to ζ = Qz and from x to t = Q2
s(x)/Q2, we can write

∫ 1

0
dxxF1(x,Q2) =

N2
c Λ2

64π

∫ ∞

0
dζ ζ K2

1(ζ)

∫ ∞

t1

dt
1 − cos tζ4

t2
, (D.2)

with t1 = Q2
s(1)/Q

2 = π2Λ3L/2Q2. It is straightforward to see that the sum rule will be

exactly recovered only when we set t1 → 0 as the lower limit in the t-integration. For small

but non-vanishing t1, we can separate an integration from 0 to ∞ which gives the sum rule,

minus an integration from 0 to t1 ≪ 1 for which we can do a Taylor expansion. We find

∫ 1

0
dxxF1(x,Q2) =

N2
c Λ2

80
− 8N2

c Λ2

7π

Q2
s(1)

Q2
+ · · · . (D.3)
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